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Overview


Note

The Agda User Manual is a work-in-progress and is still incomplete.
Contributions, additions and corrections to the Agda manual are greatly appreciated.
To do so, please open a pull request or issue
on the Github Agda  page [https://www.github.com/agda/agda].



This is the manual for the Agda programming  language, its type checking, compilation and editing
system and related tools.

A description of the Agda language is given in chapter Language Reference. Guidance on how the Agda editing and compilation
system can be used can be found in chapter Tools.





          

      

      

    

  

    
      
          
            
  
Getting Started
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Installation


Debian / Ubuntu

Prebuilt packages are available for Debian testing/unstable and Ubuntu from Karmic onwards. To install:

apt-get install agda-mode





This should install Agda and the Emacs mode.

The standard library is available in Debian testing/unstable and Ubuntu from Lucid onwards. To install:

apt-get install agda-stdlib








Fedora

Agda is packaged in Fedora (since before Fedora 18).

yum install Agda





will pull in emacs-agda-mode and ghc-Agda-devel.




NixOS

Agda is part of the Nixpkgs collection that is used by http://nixos.org/nixos. To install Agda and agda-mode for Emacs, type:

nix-env -f "<nixpkgs>" -iA haskellPackages.Agda





If you’re just interested in the library, you can also install the library without the executable. The Agda standard library is currently not installed automatically.




OS X

Homebrew [http://brew.sh] provides prebuilt packages for OS X.  To install:

brew install agda





This should take less than a minute, and install Agda together with the Emacs mode and the standard library.

By default, the standard library is installed in /usr/local/lib/agda/.  To use the standard library, it is convenient to add /usr/local/lib/agda/standard-library.agda-lib to ~/.agda/libraries, and specify standard-library in ~/.agda/defaults.  Note this is not performed automatically.

It is also possible to install --without-stdlib, --without-ghc, or from --HEAD.  Note this will require building Agda from source.

For more information, refer to the Homebrew documentation [http://git.io/brew-docs].
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Abstract definitions

Definitions can be marked as abstract, for the purpose of hiding
implementation details, or to speed up type-checking of other parts.
In essence, abstract definitions behave like postulates, thus, do not
reduce/compute.  For instance, proofs whose content does not matter
could be marked abstract, to prevent Agda from unfolding them (which
might slow down type-checking).

As a guiding principle, all the rules concerning abstract are
designed to prevent the leaking of implementation details of abstract
definitions.  Similar concepts of other programming language include
(non-representative sample):
UCSD Pascal’s and Java’s interfaces and ML’s signatures.
(Especially when abstract definitions are used in combination with modules.)


Synopsis


	Declarations can be marked as abstract using the block keyword abstract.

	Outside of abstract blocks, abstract definitions do not reduce, they are treated as postulates,
in particular:
	Abstract functions never match, thus, do not reduce.

	Abstract data types do not expose their constructors.

	Abstract record types do not expose their fields nor constructor.

	Other declarations cannot be abstract.





	Inside abstract blocks, abstract definitions reduce while type checking definitions,
but not while checking their type signatures.
Otherwise, due to dependent types, one could leak implementation
details (e.g. expose reduction behavior by using propositional
equality).

	Inside private type signatures in abstract blocks, abstract
definitions do reduce. However, there are some problems with this. See Issue
#418 [https://github.com/agda/agda/issues/418#issuecomment-245590857].

	The reach of the abstract keyword block extends recursively to
the where-blocks of a function and the declarations inside of a
record declaration, but not inside modules declared in an
abstract block.






Examples

Integers can be implemented in various ways, e.g. as difference of two
natural numbers:

module Integer where

  abstract

    ℤ = Nat × Nat

    0ℤ : ℤ
    0ℤ = 0 , 0

    1ℤ : ℤ
    1ℤ = 1 , 0

    _+ℤ_ : (x y : ℤ) → ℤ
    (p , n) +ℤ (p' , n') = (p + p') , (n + n')

    -ℤ_ : ℤ → ℤ
    -ℤ (p , n) = (n , p)

    _≡ℤ_ : (x y : ℤ) → Set
    (p , n) ≡ℤ (p' , n') = (p + n') ≡ (p' + n)

    private
      postulate
        +comm : ∀ n m → (n + m) ≡ (m + n)

    invℤ : ∀ x → (x +ℤ (-ℤ x)) ≡ℤ 0ℤ
    invℤ (p , n) rewrite +comm (p + n) 0 | +comm p n = refl





Using abstract we do not give away the actual representation of
integers, nor the implementation of the operations.  We can construct
them from 0ℤ, 1ℤ, _+ℤ_, and -ℤ, but only reason about
equality ≡ℤ with the provided lemma invℤ.

The following property shape-of-0ℤ of the integer zero exposes the
representation of integers as pairs.  As such, it is rejected by Agda:
when checking its type signature, proj₁ x fails to type check
since x is of abstract type ℤ.  Remember that the abstract
definition of ℤ does not unfold in type signatures, even when in
an abstract block!  However, if we make shape-of-ℤ private,
unfolding of abstract definitions like ℤ is enabled, and we
succeed:

-- A property about the representation of zero integers:

  abstract
    private
      shape-of-0ℤ : ∀ (x : ℤ) (is0ℤ : x ≡ℤ 0ℤ) → proj₁ x ≡ proj₂ x
      shape-of-0ℤ (p , n) refl rewrite +comm p 0 = refl





By requiring shape-of-0ℤ to be private to type-check, leaking of
representation details is prevented.




Scope of abstraction

In child modules,
when checking an abstract definition,
the abstract definitions of the parent module are transparent:

module M1 where
  abstract
    x = 0

  module M2 where
    abstract
      x-is-0 : x ≡ 0
      x-is-0 = refl





Thus, child modules can see into the representation choices of their
parent modules.  However, parent modules cannot see like this into
child modules, nor can sibling modules see through each others abstract
definitions.

The reach of the abstract keyword does not extend into modules:

module Parent where
  abstract
    module Child where
      y = 0
    x = 0  -- to avoid "useless abstract" error

  y-is-0 : Child.y ≡ 0
  y-is-0 = refl





The declarations in module Child are not abstract!




Abstract definitions with where-blocks

Definitions in a where block of an abstract definition are abstract
as well.  This means, they can see through the abstractions of their
uncles:

module Where where
  abstract
    x : Nat
    x = 0
    y : Nat
    y = x
      where
      x≡y : x ≡ 0
      x≡y = refl





Type signatures in where blocks are private, so it is fine to make
type abbreviations in where blocks of abstract definitions:

module WherePrivate where
  abstract
    x : Nat
    x = proj₁ t
      where
      T = Nat × Nat
      t : T
      t = 0 , 1
      p : proj₁ t ≡ 0
      p = refl





Note that if p was not private, application proj₁ t in its type
would be ill-formed, due to the abstract definition of T.

Named where-modules do not make their declarations private, thus
this example will fail if you replace x‘s where by module M
where.







          

      

      

    

  

    
      
          
            
  
Built-ins



	Using the built-in types

	The unit type

	Booleans

	Natural numbers

	Integers

	Floats

	Lists

	Characters

	Strings

	Equality

	Universe levels

	Sized types

	Coinduction

	IO

	Literal overloading

	Reflection

	Rewriting

	Strictness





The Agda type checker knows about, and has special treatment for, a number of
different concepts. The most prominent is natural numbers, which has a special
representation as Haskell integers and support for fast arithmetic. The surface
syntax of these concepts are not fixed, however, so in order to use the special
treatment of natural numbers (say) you define an appropriate data type and then
bind that type to the natural number concept using a BUILTIN pragma.

Some built-in types support primitive functions that have no corresponding Agda
definition. These functions are declared using the primitive keyword by
giving their type signature.


Using the built-in types

While it is possible to define your own versions of the built-in types and bind
them using BUILTIN pragmas, it is recommended to use the definitions in the
Agda.Builtin modules. These modules are installed when you install Agda and
so are always available. For instance, built-in natural numbers are defined in
Agda.Builtin.Nat. The standard library [https://github.com/agda/agda-stdlib] and the agda-prelude [https://github.com/UlfNorell/agda-prelude]
reexport the definitions from these modules.




The unit type

module Agda.Builtin.Unit





The unit type is bound to the built-in UNIT as follows:

record ⊤ : Set where
{-# BUILTIN UNIT ⊤ #-}





Agda needs to know about the unit type since some of the primitive operations
in the reflected type checking monad return values
in the unit type.




Booleans

module Agda.Builtin.Bool where





Built-in booleans are bound using the BOOLEAN, TRUE and FALSE built-ins:

data Bool : Set where
  false true : Bool
{-# BUILTIN BOOL  Bool  #-}
{-# BUILTIN TRUE  true  #-}
{-# BUILTIN FALSE false #-}





Note that unlike for natural numbers, you need to bind the constructors
separately. The reason for this is that Agda cannot tell which constructor
should correspond to true and which to false, since you are free to name them
whatever you like.

The only effect of binding the boolean type is that you can then use primitive
functions returning booleans, such as built-in NATEQUALS.




Natural numbers

module Agda.Builtin.Nat





Built-in natural numbers are bound using the NATURAL built-in as follows:

data Nat : Set where
  zero : Nat
  suc  : Nat → Nat
{-# BUILTIN NATURAL Nat #-}





The names of the data type and the constructors can be chosen freely, but the
shape of the datatype needs to match the one given above (modulo the order of
the constructors). Note that the constructors need not be bound explicitly.

Binding the built-in natural numbers as above has the following effects:


	The use of natural number literals is
enabled. By default the type of a natural number literal will be Nat, but
it can be overloaded to include other types as
well.

	Closed natural numbers are represented as Haskell integers at compile-time.

	The compiler backends compile natural numbers to the
appropriate number type in the target language.

	Enabled binding the built-in natural number functions described below.




Functions on natural numbers

There are a number of built-in functions on natural numbers. These are special
in that they have both an Agda definition and a primitive implementation. The
primitive implementation is used to evaluate applications to closed terms, and
the Agda definition is used otherwise. This lets you prove things about the
functions while still enjoying good performance of compile-time evaluation. The
built-in functions are the following:

_+_ : Nat → Nat → Nat
zero  + m = m
suc n + m = suc (n + m)
{-# BUILTIN NATPLUS _+_ #-}

_-_ : Nat → Nat → Nat
n     - zero  = n
zero  - suc m = zero
suc n - suc m = n - m
{-# BUILTIN NATMINUS _-_ #-}

_*_ : Nat → Nat → Nat
zero  * m = zero
suc n * m = (n * m) + m
{-# BUILTIN NATTIMES _*_ #-}

_==_ : Nat → Nat → Bool
zero  == zero  = true
suc n == suc m = n == m
_     == _     = false
{-# BUILTIN NATEQUALS _==_ #-}

_<_ : Nat → Nat → Bool
_     < zero  = false
zero  < suc _ = true
suc n < suc m = n < m
{-# BUILTIN NATLESS _<_ #-}

div-helper : Nat → Nat → Nat → Nat → Nat
div-helper k m  zero    j      = k
div-helper k m (suc n)  zero   = div-helper (suc k) m n m
div-helper k m (suc n) (suc j) = div-helper k m n j
{-# BUILTIN NATDIVSUCAUX div-helper #-}

mod-helper : Nat → Nat → Nat → Nat → Nat
mod-helper k m  zero    j      = k
mod-helper k m (suc n)  zero   = mod-helper 0 m n m
mod-helper k m (suc n) (suc j) = mod-helper (suc k) m n j
{-# BUILTIN NATMODSUCAUX mod-helper #-}





The Agda definitions are checked to make sure that they really define the
corresponding built-in function. The definitions are not required to be exactly
those given above, for instance, addition and multiplication can be defined by
recursion on either argument, and you can swap the arguments to the addition in
the recursive case of multiplication.

The NATDIVSUCAUX and NATMODSUCAUX are built-ins bind helper functions
for defining natural number division and modulo operations, and satisfy the
properties

div n (suc m) ≡ div-helper 0 m n m
mod n (suc m) ≡ mod-helper 0 m n m










Integers

module Agda.Builtin.Int





Built-in integers are bound with the INTEGER built-in to a data type with
two constructors: one for positive and one for negative numbers. The built-ins
for the constructors are INTEGERPOS and INTEGERNEGSUC.

data Int : Set where
  pos    : Nat → Int
  negsuc : Nat → Int
{-# BUILTIN INTEGER       Int    #-}
{-# BUILTIN INTEGERPOS    pos    #-}
{-# BUILTIN INTEGERNEGSUC negsuc #-}





Here negsuc n represents the integer -n - 1. Unlike for natural
numbers, there is no special representation of integers at compile-time since
the overhead of using the data type compared to Haskell integers is not that
big.

Built-in integers support the following primitive operation (given a suitable
binding for String):

primitive
  primShowInteger : Int → String








Floats

module Agda.Builtin.Float





Floating point numbers are bound with the FLOAT built-in:

postulate Float : Set
{-# BUILTIN FLOAT Float #-}





This lets you use floating point literals.
Floats are represented by the type checker as IEEE 754 binary64 double precision floats, with the restriction
that there is exactly one NaN value. The following
primitive functions are available (with suitable bindings for Nat, Bool, String and Int):

primitive
  primNatToFloat             : Nat → Float
  primFloatPlus              : Float → Float → Float
  primFloatMinus             : Float → Float → Float
  primFloatTimes             : Float → Float → Float
  primFloatNegate            : Float → Float
  primFloatDiv               : Float → Float → Float
  primFloatEquality          : Float → Float → Bool
  primFloatNumericalEquality : Float → Float → Bool
  primFloatNumericalLess     : Float → Float → Bool
  primRound                  : Float → Int
  primFloor                  : Float → Int
  primCeiling                : Float → Int
  primExp                    : Float → Float
  primLog                    : Float → Float
  primSin                    : Float → Float
  primCos                    : Float → Float
  primTan                    : Float → Float
  primASin                   : Float → Float
  primACos                   : Float → Float
  primATan                   : Float → Float
  primATan2                  : Float → Float → Float
  primShowFloat              : Float → String





The primFloatEquality primitive is intended to be used for decidable
propositional equality. To enable proof carrying comparisons while preserving
consisteny, the following laws apply:


	primFloatEquality NaN NaN returns true.

	primFloatEquality NaN (primFloatNegate NaN) returns true.

	primFloatEquality 0.0 -0.0 returns false.



For numerical comparisons, use the primFloatNumericalEquality and
primFloatNumericalLess primitives. These are implemented by the
corresponding Haskell functions with the following behaviour and
exceptions:


	primFloatNumericalEquality 0.0 -0.0 returns true.

	primFloatNumericalEquality NaN NaN returns false.

	primFloatNumericalLess NaN NaN returns false.

	primFloatNumericalLess (primFloatNegate NaN) (primFloatNegate NaN) returns false.

	primFloatNumericalLess NaN (primFloatNegate NaN) returns false.

	primFloatNumericalLess (primFloatNegate NaN) NaN returns false.

	primFloatNumericalLess sorts NaN below everything but negative infinity.

	primFloatNumericalLess -0.0 0.0 returns false.




Warning

Do not use primFloatNumericalEquality to establish decidable
propositional equality. Doing so makes Agda inconsistent, see
Issue
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Coinduction


Coinductive Records

It is possible to define the type of infinite lists (or streams) of
elements of some type
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Copatterns

Consider the following record:

record Enumeration A : Set where
  constructor enumeration
  field
    start    : A
    forward  : A → A
    backward : A → A





This gives an interfaces that allows us to move along the elements of a
data type A.

For example, we can get the “third” element of a type A:

open Enumeration

3rd : {A : Set} → Enumeration A → A
3rd e = forward e (forward e (forward e (start e)))





Or we can go back 2 positions starting from a given a:

backward-2 : {A : Set} → Enumeration A → A → A
backward-2 e a = backward (backward a)
  where
    open Enumeration e





Now, we want to use these methods on natural numbers. For this, we need
a record of type Enumeration Nat. Without copatterns, we would
specify all the fields in a single expression:

open Enumeration

enum-Nat : Enumeration Nat
enum-Nat = record {
    start    = 0
  ; forward  = suc
  ; backward = pred
  }
  where
    pred : Nat → Nat
    pred zero    = zero
    pred (suc x) = x

test₁ : 3rd enum-Nat ≡ 3
test₁ = refl

test₂ : backward-2 enum-Nat 5 ≡ 3
test₂ = refl





Note that if we want to use automated case-splitting and pattern
matching to implement one of the fields, we need to do so in a separate
definition.

With copatterns, we can define the fields of a record as separate declarations,
in the same way that we would give different cases for a function:

open Enumeration

enum-Nat : Enumeration Nat
start    enum-Nat = 0
forward  enum-Nat n = suc n
backward enum-Nat zero    = zero
backward enum-Nat (suc n) = n





The resulting behaviour is the same in both cases:

test₁ : 3rd enum-Nat ≡ 3
test₁ = refl

test₂ : backward-2 enum-Nat 5 ≡ 3
test₂ = refl






Copatterns in function definitions

In fact, we do not need to start at 0. We can allow the user to
specify the starting element.

Without copatterns, we just add the extra argument to the function declaration:

open Enumeration

enum-Nat : Nat → Enumeration Nat
enum-Nat initial = record {
    start    = initial
  ; forward  = suc
  ; backward = pred
  }
  where
    pred : Nat → Nat
    pred zero    = zero
    pred (suc x) = x

test₁ : 3rd (enum-Nat 10) ≡ 13
test₁ = refl





With copatterns, the function argument must be repeated once for each
field in the record:

open Enumeration

enum-Nat : Nat → Enumeration Nat
start    (enum-Nat initial) = initial
forward  (enum-Nat _) n = suc n
backward (enum-Nat _) zero    = zero
backward (enum-Nat _) (suc n) = n








Mixing patterns and co-patterns

Instead of allowing an arbitrary value, we want to limit the user to
two choices: 0 or 42.

Without copatterns, we would need an auxiliary definition to choose which
value to start with based on the user-provided flag:

open Enumeration

if_then_else_ : {A : Set} → Bool → A → A → A
if true  then x else _ = x
if false then _ else y = y

enum-Nat : Bool → Enumeration Nat
enum-Nat ahead = record {
    start    = if ahead then 42 else 0
  ; forward  = suc
  ; backward = pred
  }
  where
    pred : Nat → Nat
    pred zero    = zero
    pred (suc x) = x





With copatterns, we can do the case analysis directly by pattern matching:

open Enumeration

enum-Nat : Bool → Enumeration Nat
start    (enum-Nat true)  = 42
start    (enum-Nat false) = 0
forward  (enum-Nat _) n = suc n
backward (enum-Nat _) zero    = zero
backward (enum-Nat _) (suc n) = n






Tip

When using copatterns to define an element of a record type,
the fields of the record must be in scope. In the examples above,
we use open Enumeration to bring the fields of the record into
scope.

Consider the first example:

enum-Nat : Enumeration Nat
start    enum-Nat = 0
forward  enum-Nat n = suc n
backward enum-Nat zero    = zero
backward enum-Nat (suc n) = n





If the fields of the Enumeration record are not in scope (in
particular, the start field), then Agda will not be able to
figure out what the first copattern means:

Could not parse the left-hand side start enum-Nat
Operators used in the grammar:
None
when scope checking the left-hand side start enum-Nat in the
definition of enum-Nat





The solution is to open the record before using its fields:

open Enumeration

enum-Nat : Enumeration Nat
start    enum-Nat = 0
forward  enum-Nat n = suc n
backward enum-Nat zero    = zero
backward enum-Nat (suc n) = n
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Core language


Note

This is a stub



data Term = Var Int Elims
          | Def QName Elims               -- ^ @f es@, possibly a delta/iota-redex
          | Con ConHead Args              -- ^ @c vs@
          | Lam ArgInfo (Abs Term)        -- ^ Terms are beta normal. Relevance is ignored
          | Lit Literal
          | Pi (Dom Type) (Abs Type)      -- ^ dependent or non-dependent function space
          | Sort Sort
          | Level Level
          | MetaV MetaId Elims
          | DontCare Term
            -- ^ Irrelevant stuff in relevant position, but created
            --   in an irrelevant context.









          

      

      

    

  

  
    
    
    Data Types
    
    

    
 
  
  

    
      
          
            
  
Data Types


Simple datatypes


Example datatypes

In the introduction we already showed the definition of the data type of natural numbers (in unary notation):

data Nat : Set where
    zero : Nat
    suc  : Nat → Nat





We give a few more examples. First the data type of truth values:

data Bool : Set where
  true  : Bool
  false : Bool





The True set represents the trivially true proposition:

data True : Set where
    tt : True





The False set has no constructor and hence no elements. It
represent the trivially false proposition:

data False : Set where





Another example is the data type of non-empty  binary trees with natural numbers in the leaves:

data BinTree : Set where
  leaf   : Nat → BinTree
  branch : BinTree → BinTree → BinTree





Finally, the data type of Brouwer ordinals:

data Ord : Set where
  zeroOrd : Ord
  sucOrd  : Ord → Ord
  limOrd  : (Nat → Ord) → Ord








General form

The general form of the definition of a simple datatype D is the
following

data D : Setᵢ where
  c₁ : A₁
  ...
  cₙ : Aₙ





The name D of the data type and the names c₁, ..., cₙ of
the constructors must be new w.r.t. the current signature and context,
and the types A₁, ..., Aₙ must be function types ending in
D, i.e. they must be of the form

(y₁ : B₁) → ... → (yₘ : Bₘ) → D










Parametrized datatypes

Datatypes can have parameters. They are declared after the name of the
datatype but before the colon, for example:

data List (A : Set) : Set where
  []  : List A
  _∷_ : A → List A → List A








Indexed datatypes

In addition to parameters, datatypes can also have indices. In
contrast to parameters which are required to be the same for all
constructors, indices can vary from constructor to constructor. They
are declared after the colon as function arguments to Set. For
example, fixed-length vectors can be defined by indexing them over
their length of type Nat:

data Vector (A : Set) : Nat → Set where
  []  : Vector A zero
  _∷_ : {n : Nat} → A → Vector A n → Vector A (suc n)





Notice that the parameter A is bound once for all constructors,
while the index {n : Nat} must be bound locally in the constructor
_∷_.

Indexed datatypes can also be used to describe predicates, for example
the predicate Even : Nat → Set can be defined as follows:

data Even : Nat → Set where
  even-zero  : Even zero
  even-plus2 : {n : Nat} → Even n → Even (suc (suc n))






General form

The general form of the definition of a (parametrized, indexed)
datatype D is the following

data D (x₁ : P₁) ... (xₖ : Pₖ) : (y₁ : Q₁) → ... → (yₗ : Qₗ) → Set ℓ where
  c₁ : A₁
  ...
  cₙ : Aₙ





where the types A₁, ..., Aₙ are function types of the form

(z₁ : B₁) → ... → (zₘ : Bₘ) → D x₁ ... xₖ t₁ ... tₗ










Strict positivity

When defining a datatype D, Agda poses an additional requirement
on the types of the constructors of D, namely that D may only
occur strictly positively in the types of their arguments.

Concretely, for a datatype with constructors c₁ : A₁, ..., cₙ :
Aₙ, Agda checks that each Aᵢ has the form

(y₁ : B₁) → ... → (yₘ : Bₘ) → D





where an argument types Bᵢ of the constructors is either


	non-inductive (a side condition) and does not mention D at
all,



	or inductive and has the form

(z₁ : C₁) → ... → (zₖ : Cₖ) → D





where D must not occur in any Cⱼ.





The strict positivity condition rules out declarations such as

data Bad : Set where
    bad : (Bad → Bad) → Bad
    --     A     B      C
    -- A is in a negative position, B and C are OK





since there is a negative occurrence of Bad in the type of the
argument of the constructor.  (Note that the corresponding data type
declaration of Bad is allowed in standard functional languages
such as Haskell and ML.).

Non strictly-positive declarations are rejected because
they admit non-terminating functions.

If the positivity check is disabled, so that a similar declaration of
Bad is allowed, it is possible to construct a term of the empty
type, even without recursion.

{-# OPTIONS --no-positivity-check #-}





data ⊥ : Set where

data Bad : Set where
  bad : (Bad → ⊥) → Bad

self-app : Bad → ⊥
self-app (bad f) = f (bad f)

absurd : ⊥
absurd = self-app (bad self-app)





For more general information on termination see Termination Checking.
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Foreign Function Interface


Haskell FFI


Note

This section currently only applies
to the GHC backend.



The FFI is controlled by five pragmas:


	IMPORT

	COMPILED_TYPE

	COMPILED_DATA

	COMPILED

	COMPILED_EXPORT



All FFI bindings are only used when executing programs and do not
influence the type checking phase.


The IMPORT pragma

{-# IMPORT HsModule #-}





The IMPORT pragma instructs the compiler to generate a Haskell
import statement in the compiled code. The pragma above will generate
the following Haskell code:

import qualified HsModule





IMPORT pragmas can appear anywhere in a file.




The COMPILED_TYPE pragma

postulate D : Set
{-# COMPILED_TYPE D HsType #-}





The COMPILED_TYPE pragma tells the compiler that the postulated
Agda type D corresponds to the Haskell type HsType. This
information is used when checking the types of COMPILED functions
and constructors.




The COMPILED_DATA pragma

{-# COMPILED_DATA D HsD HsC1 .. HsCn #-}





The COMPILED_DATA pragma tells the compiler that the Agda datatype
D corresponds to the Haskell datatype HsD and that its
constructors should be compiled to the Haskell constructors
HsC1 .. HsCn. The compiler checks that the Haskell constructors
have the right types and that all constructors are covered.

Example:

data List (A : Set) : Set where
  []   : List A
  _::_ : A → List A → List A

{-# COMPILED_DATA List [] [] (:) #-}






Built-in Types

The GHC backend compiles certain Agda built-ins to special Haskell
types. The mapping between Agda built-in types and Haskell types is as
follows:







	Agda Built-in
	Haskell Type




	STRING
	Data.Text.Text


	CHAR
	Char


	INTEGER
	Integer


	BOOL
	Boolean


	FLOAT
	Double






Warning

Agda FLOAT values have only one logical NaN value. At runtime,
there might be multiple different NaN representations present. All
such NaN values must be treated equal by FFI calls to avoid making
Agda inconsistent.








The COMPILED pragma

postulate f : ∀ a b → (a → b) → List a → List b
{-# COMPILED f HsCode #-}





The COMPILED pragma tells the compiler to compile the postulated
function f to the Haskell Code HsCode. HsCode can be an
arbitrary Haskell term of the right type. This is checked by
translating the given Agda type of f into a Haskell type (see
Translating Agda types to Haskell) and checking that this
matches the type of HsCode.

Example:

postulate String : Set
{-# BUILTIN STRING String #-}

data Unit : Set where unit : Unit
{-# COMPILED_DATA Unit () () #-}

postulate
  IO       : Set → Set
  putStrLn : String → IO Unit

{-# COMPILED_TYPE IO IO #-}
{-# COMPILED putStrLn putStrLn #-}








Polymorphic functions

Agda is a monomorphic language, so polymorphic functions are modeled
as functions taking types as arguments. These arguments will be
present in the compiled code as well, so when calling polymorphic
Haskell functions they have to be discarded explicitly. For instance,

postulate
  map : {A B : Set} → (A → B) → List A → List B

{-# COMPILED map (\_ _ → map) #-}





In this case compiled calls to map will still have A and B as
arguments, so the compiled definition ignores its two first arguments
and then calls the polymorphic Haskell map function.




Handling typeclass constraints

The problem here is that Agda’s Haskell FFI doesn’t understand
Haskell’s class system. If you look at this error message, GHC
complains about a missing class constraint:

No instance for (Graphics.UI.Gtk.ObjectClass xA)
  arising from a use of Graphics.UI.Gtk.objectDestroy’





A work around to represent Haskell Classes in Agda is to use a Haskell
datatype to represent the class constraint in a way Agda understands:

{-# LANGUAGE GADTs #-}
data MyObjectClass a = ObjectClass a => Witness





We also need to write a small wrapper for the objectDestroy
function in Haskell:

myObjectDestroy :: MyObjectClass a -> Signal a (IO ())
myObjectDestroy Witness = objectDestroy





Notice that the class constraint disappeared from the Haskell type
signature! The only missing part are the Agda FFI bindings:

postulate
  Window : Set
  Signal : Set → Set → Set
  MyObjectClass : Set → Set
  windowInstance : MyObjectClass Window
  myObjectDestroy : ∀ {a} → MyObjectClass a → Signal a Unit
{-# COMPILED_TYPE Window Window #-}
{-# COMPILED_TYPE Signal Signal #-}
{-# COMPILED_TYPE MyObjectClass MyObjectClass #-}
{-# COMPILED windowInstance (Witness :: MyObjectClass Window) #-}
{-# COMPILED myObjectDestroy (\_ → myObjectDestroy) #-}





Then you should be able to call this as follows in Agda:

p : Signal Window Unit
p = myObjectDestroy windowInstance





This is somewhat similar to doing a dictionary-translation of the
Haskell class system and generates quite a bit of boilerplate code.




The COMPILED_EXPORT pragma


New in version 2.3.4.



g : ∀ {a : Set} → a → a
g x = x

{-# COMPILED_EXPORT g hsNameForG #-}





The COMPILED_EXPORT pragma tells the compiler that the Agda
function f should be compiled to a Haskell function called
hsNameForF. Without this pragma, functions are compiled to Haskell
functions with unpredictable names and, as a result, cannot be invoked
from Haskell. The type of hsNameForF will be the translated type
of f (see Translating Agda types to Haskell). If f is
defined in file A/B.agda, then hsNameForF should be imported from
module MAlonzo.Code.A.B.

Example:

-- file IdAgda.agda
module IdAgda where

idAgda : {A : Set} → A → A
idAgda x = x

{-# COMPILED_EXPORT idAgda idAgda #-}





The compiled and exported function idAgda can then be imported and
invoked from Haskell like this:

-- file UseIdAgda.hs
module UseIdAgda where

import MAlonzo.Code.IdAgda (idAgda)
-- idAgda :: () -> a -> a

idAgdaApplied :: a -> a
idAgdaApplied = idAgda ()








Translating Agda types to Haskell


Note

This section may contain outdated material!



When checking the type of COMPILED function f : A, the Agda type A is translated to a Haskell type TA and the Haskell code Ef is checked against this type. The core of the translation on kinds K[[M]], types T[[M]] and expressions E[[M]] is:

K[[ Set A ]] = *
K[[ x As ]] = undef
K[[ fn (x : A) B ]] = undef
K[[ Pi (x : A) B ]] = K[[ A ]] ->  K[[ B ]]
K[[ k As ]] =
  if COMPILED_TYPE k
  then *
  else undef

T[[ Set A ]] = Unit
T[[ x As ]] = x T[[ As ]]
T[[ fn (x : A) B ]] = undef
T[[ Pi (x : A) B ]] =
  if x in fv B
  then forall x . T[[ A ]] -> T[[ B ]]
  else T[[ A ]] -> T[[ B ]]
T[[ k As ]] =
  if COMPILED_TYPE k T
  then T T[[ As ]]
  else if COMPILED k E
  then Unit
  else undef

E[[ Set A ]] = unit
E[[ x As ]] = x E[[ As ]]
E[[ fn (x : A) B ]] = fn x . E[[ B ]]
E[[ Pi (x : A) B ]] = unit
E[[ k As ]] =
  if COMPILED k E
  then E E[[ As ]]
  else runtime-error





The T[[ Pi (x : A) B ]] case is worth mentioning. Since the compiler doesn’t erase type arguments we can’t translate (a : Set) → B to forall a. B — an argument of type Set will still be passed to a function of this type. Therefore, the translated type is forall a. () → B where the type argument is assumed to have unit type. This is safe since we will never actually look at the argument, and the compiler compiles types to ().
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Function Definitions


Introduction

A function is defined by first declaring its type followed by a number of
equations called clauses. Each clause consists of the function being defined
applied to a number of patterns, followed by = and a term called the
right-hand side. For example:

not : Bool → Bool
not true  = false
not false = true





Functions are allowed to call themselves recursively, for example:

twice : Nat → Nat
twice zero    = zero
twice (suc n) = suc (suc (twice n))








General form

The general form for defining a function is

f : (x₁ : A₁) → … → (xₙ : Aₙ) → B
f p₁ … pₙ = d
…
f q₁ … qₙ = e





where f is a new identifier, pᵢ and qᵢ are patterns of type Aᵢ,
and d and e are expressions.

The declaration above gives the identifier f the type
(x₁ : A₁) → … → (x₁ : A₁) → B and f is defined by the defining
equations. Patterns are matched from top to bottom, i.e., the first pattern
that matches the actual parameters is the one that is used.

By default, Agda checks the following properties of a function definition:


	The patterns in the left-hand side of each clause should consist only of
constructors and variables.

	No variable should occur more than once on the left-hand side of a single
clause.

	The patterns of all clauses should together cover all possible inputs of
the function.

	The function should be terminating on all possible inputs, see
Termination Checking.






Special patterns

In addition to constructors consisting of constructors and variables, Agda
supports two special kinds of patterns: dot patterns and absurd patterns.


Dot patterns

A dot pattern (also called inaccessible pattern) can be used when
the only type-correct value of the argument is determined by the
patterns given for the other arguments.
The syntax for a dot pattern is .t.

As an example, consider the datatype Square defined as follows

data Square : Nat → Set where
  sq : (m : Nat) → Square (m * m)





Suppose we want to define a function root : (n : Nat) → Square n → Nat that
takes as its arguments a number n and a proof that it is a square, and
returns the square root of that number. We can do so as follows:

root : (n : Nat) → Square n → Nat
root .(m * m) (sq m) = m





Notice that by matching on the argument of type Square n with the constructor
sq : (m : Nat) → Square (m * m), n is forced to be equal to m * m.

In general, when matching on an argument of type D i₁ … iₙ with a constructor
c : (x₁ : A₁) → … → (xₘ : Aₘ) → D j₁ … jₙ, Agda will attempt to unify
i₁ … iₙ with j₁ … jₙ. When the unification algorithm instantiates a
variable x with value t, the corresponding argument of the function
can be replaced by a dot pattern .t. Using a dot pattern is optional, but
can help readability. The following are also legal definitions of
root:

Since Agda 2.4.2.4:

root₁ : (n : Nat) → Square n → Nat
root₁ _ (sq m) = m





Since Agda 2.5.2:

root₂ : (n : Nat) → Square n → Nat
root₂ n (sq m) = m





In the case of root₂, n evaluates to m * m in the body of the
function and is thus equivalent to

root₃ : (n : Nat) → Square n → Nat
root₃ _ (sq m) = let n = m * m in m








Absurd patterns

Absurd patterns can be used when none of the constructors for a particular
argument would be valid. The syntax for an absurd pattern is ().

As an example, if we have a datatype Even defined as follows

data Even : Nat → Set where
  even-zero  : Even zero
  even-plus2 : {n : Nat} → Even n → Even (suc (suc n))





then we can define a function one-not-even : Even 1 → ⊥ by using an absurd
pattern:

one-not-even : Even 1 → ⊥
one-not-even ()





Note that if the left-hand side of a clause contains an absurd pattern, its
right-hand side must be omitted.

In general, when matching on an argument of type D i₁ … iₙ with an absurd
pattern, Agda will attempt for each constructor
c : (x₁ : A₁) → … → (xₘ : Aₘ) → D j₁ … jₙ of the datatype D to unify
i₁ … iₙ with j₁ … jₙ. The absurd pattern will only be accepted if all
of these unifications end in a conflict.




As-patterns

As-patterns (or @-patterns) can be used to name a pattern. The name has the
same scope as normal pattern variables (i.e. the right-hand side, where clause,
and dot patterns). The name reduces to the value of the named pattern. For example:

module _ {A : Set} (_<_ : A → A → Bool) where
  merge : List A → List A → List A
  merge xs [] = xs
  merge [] ys = ys
  merge xs@(x ∷ xs₁) ys@(y ∷ ys₁) =
    if x < y then x ∷ merge xs₁ ys
             else y ∷ merge xs ys₁





As-patterns are properly supported since Agda 2.5.2.






Case trees

Internally, Agda represents function definitions as case trees. For example,
a function definition

max : Nat → Nat → Nat
max zero    n       = n
max m       zero    = m
max (suc m) (suc n) = suc (max m n)





will be represented internally as a case tree that looks like this:

max m n = case m of
  zero   -> n
  suc m' -> case n of
    zero   -> suc m'
    suc n' -> suc (max m' n')





Note that because Agda uses this representation of the function max
the equation max m zero = m will not hold by definition, but must be
proven instead. Since 2.5.1 you can have Agda warn you when a situation like this
occurs by adding {-# OPTIONS --exact-split #-} at the top of your file.
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Function Types

Function types are written (x : A) → B, or in the case of non-dependent functions simply A → B. For instance, the type of the addition function for natural numbers is:

Nat → Nat → Nat





and the type of the addition function for vectors is:

(A : Set) → (n : Nat) → (u : Vec A n) → (v : Vec A n) → Vec A n





where Set is the type of sets and Vec A n is the type of vectors with n elements of type A. Arrows between consecutive hypotheses of the form (x : A) may also be omitted, and (x : A) (y : A) may be shortened to (x y : A):

(A : Set) (n : Nat)(u v : Vec A n) → Vec A n





Functions are constructed by lambda abstractions, which can be either typed or untyped. For instance, both expressions below have type (A : Set) → A → A (the second expression checks against other types as well):

example₁ = \ (A : Set)(x : A) → x
example₂ = \ A x → x





You can also use the Unicode symbol λ (type “\lambda” in the Emacs Agda mode) instead of \\.

The application of a function f : (x : A) → B to an argument a : A is written f a and the type of this is B[x := a].


Notational conventions

Function types:

prop₁ : ((x : A) (y : B) → C) is-the-same-as   ((x : A) → (y : B) → C)
prop₂ : ((x y : A) → C)       is-the-same-as   ((x : A)(y : A) → C)
prop₃ : (forall (x : A) → C)  is-the-same-as   ((x : A) → C)
prop₄ : (forall x → C)        is-the-same-as   ((x : _) → C)
prop₅ : (forall x y → C)      is-the-same-as   (forall x → forall y → C)





You can also use the Unicode symbol ∀ (type “\all” in the Emacs Agda mode) instead of forall.

Functional abstraction:

(\x y → e)                    is-the-same-as   (\x → (\y → e))





Functional application:

(f a b)                       is-the-same-as    ((f a) b)
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Implicit Arguments

It is possible to omit terms that the type checker can figure out for
itself, replacing them by _.
If the type checker cannot infer the value of an _ it will report
an error.
For instance, for the polymorphic identity function

id : (A : Set) → A → A





the first argument can be inferred from the type of the second argument,
so we might write id _ zero for the application of the identity function to zero.

We can even write this function application without the first argument.
In that case we declare an implicit function space:

id : {A : Set} → A → A





and then we can use the notation id zero.

Another example:

_==_  : {A : Set} → A → A → Set
subst : {A : Set} (C : A → Set) {x y : A} → x == y → C x → C y





Note how the first argument to _==_ is left implicit.
Similarly, we may leave out the implicit arguments A, x, and y in an
application of subst.
To give an implicit argument explicitly, enclose in curly braces.
The following two expressions are equivalent:

x1 = subst C eq cx
x2 = subst {_} C {_} {_} eq cx





It is worth noting that implicit arguments are also inserted at the end of an application,
if it is required by the type.
For example, in the following, y1 and y2 are equivalent.

y1 : a == b → C a → C b
y1 = subst C

y2 : a == b → C a → C b
y2 = subst C {_} {_}





Implicit arguments are inserted eagerly in left-hand sides so y3 and y4
are equivalent. An exception is when no type signature is given, in which case
no implicit argument insertion takes place. Thus in the definition of y5
there only implicit is the A argument of subst.

y3 : {x y : A} → x == y → C x → C y
y3 = subst C

y4 : {x y : A} → x == y → C x → C y
y4 {x} {y} = subst C {_} {_}

y5 = subst C





It is also possible to write lambda abstractions with implicit arguments. For
example, given id : (A : Set) → A → A, we can define the identity function with
implicit type argument as

id’ = λ {A} → id A





Implicit arguments can also be referred to by name,
so if we want to give the expression e explicitly for y
without giving a value for x we can write

subst C {y = e} eq cx





When constructing implicit function spaces the implicit argument can be omitted,
so both expressions below are valid expressions of type {A : Set} → A → A:

z1 = λ {A} x → x
z2 = λ x → x





The ∀ (or forall) syntax for function types also has implicit variants:

① : (∀ {x : A} → B)    is-the-same-as  ({x : A} → B)
② : (∀ {x} → B)        is-the-same-as  ({x : _} → B)
③ : (∀ {x y} → B)      is-the-same-as  (∀ {x} → ∀ {y} → B)





There are no restrictions on when a function space can be implicit.
Internally, explicit and implicit function spaces are treated in the same way.
This means that there are no guarantees that implicit arguments will be solved.
When there are unsolved implicit arguments the type checker will give
an error message indicating which application contains the unsolved
arguments.
The reason for this liberal approach to implicit arguments is that
limiting the use of implicit argument to the cases where we guarantee
that they are solved rules out many useful cases in practice.


Metavariables




Unification
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Instance Arguments



	Usage
	Defining type classes

	Declaring instances

	Examples





	Instance resolution





Instance arguments are the Agda equivalent of Haskell type class constraints
and can be used for many of the same purposes. In Agda terms, they are
implicit arguments that get solved by a special
instance resolution algorithm, rather than by the unification algorithm used
for normal implicit arguments. In principle, an instance argument is resolved,
if a unique instance of the required type can be built from declared
instances and the current context.


Usage

Instance arguments are enclosed in double curly braces {{ }}, or their
unicode equivalent ⦃ ⦄ (U+2983 and U+2984, which can be typed as
\{{ and \}} in the Emacs mode). For instance,
given a function _==_

_==_ : {A : Set} {{eqA : Eq A}} → A → A → Bool





for some suitable type Eq, you might define

elem : {A : Set} {{eqA : Eq A}} → A → List A → Bool
elem x (y ∷ xs) = x == y || elem x xs
elem x []       = false





Here the instance argument to _==_ is solved by the corresponding argument
to elem. Just like ordinary implicit arguments, instance arguments can be
given explicitly. The above definition is equivalent to

elem : {A : Set} {{eqA : Eq A}} → A → List A → Bool
elem {{eqA}} x (y ∷ xs) = _==_ {{eqA}} x y || elem {{eqA}} x xs
elem         x []       = false





A very useful function that exploits this is the function it which lets you
apply instance resolution to solve an arbitrary goal:

it : ∀ {a} {A : Set a} {{_ : A}} → A
it {{x}} = x





Note that instance arguments in types are always named, but the name can be _:

_==_ : {A : Set} → {{Eq A}} → A → A → Bool    -- INVALID





_==_ : {A : Set} {{_ : Eq A}} → A → A → Bool  -- VALID






Defining type classes

The type of an instance argument must have the form {Γ} → C vs, where C
is a bound variable or the name of a data or record type, and {Γ} denotes
an arbitrary number of (ordinary) implicit arguments (see dependent
instances below for an example where Γ is non-empty). Other than that
there are no requirements on the type of an instance argument. In particular,
there is no special declaration to say that a type is a “type class”. Instead,
Haskell-style type classes are usually defined as record types. For instance,

record Monoid {a} (A : Set a) : Set a where
  field
    mempty : A
    _<>_   : A → A → A





In order to make the fields of the record available as functions taking
instance arguments you can use the special module application

open Monoid {{...}} public





This will bring into scope

mempty : ∀ {a} {A : Set a} {{_ : Monoid A}} → A
_<>_   : ∀ {a} {A : Set a} {{_ : Monoid A}} → A → A → A





Superclass dependencies can be implemented using Instance fields.

See Module application and Record modules for details about how
the module application is desugared. If defined by hand, mempty would be

mempty : ∀ {a} {A : Set a} {{_ : Monoid A}} → A
mempty {{mon}} = Monoid.mempty mon





Although record types are a natural fit for Haskell-style type classes, you can
use instance arguments with data types to good effect. See the examples below.




Declaring instances

A seen above, instance arguments in the context are available when solving
instance arguments, but you also need to be able to
define top-level instances for concrete types. This is done using the
instance keyword, which starts a block in
which each definition is marked as an instance available for instance
resolution. For example, an instance Monoid (List A) can be defined as

instance
  ListMonoid : ∀ {a} {A : Set a} → Monoid (List A)
  ListMonoid = record { mempty = []; _<>_ = _++_ }





Or equivalently, using copatterns:

instance
  ListMonoid : ∀ {a} {A : Set a} → Monoid (List A)
  mempty {{ListMonoid}} = []
  _<>_   {{ListMonoid}} xs ys = xs ++ ys





Top-level instances must target a named type (Monoid in this case), and
cannot be declared for types in the context.

You can define local instances in let-expressions in the same way as a
top-level instance. For example:

mconcat : ∀ {a} {A : Set a} {{_ : Monoid A}} → List A → A
mconcat [] = mempty
mconcat (x ∷ xs) = x <> mconcat xs

sum : List Nat → Nat
sum xs =
  let instance
        NatMonoid : Monoid Nat
        NatMonoid = record { mempty = 0; _<>_ = _+_ }
  in mconcat xs





Instances can have instance arguments themselves, which will be filled in
recursively during instance resolution. For instance,

record Eq {a} (A : Set a) : Set a where
  field
    _==_ : A → A → Bool

open Eq {{...}} public

instance
  eqList : ∀ {a} {A : Set a} {{_ : Eq A}} → Eq (List A)
  _==_ {{eqList}} []       []       = true
  _==_ {{eqList}} (x ∷ xs) (y ∷ ys) = x == y && xs == ys
  _==_ {{eqList}} _        _        = false

  eqNat : Eq Nat
  _==_ {{eqNat}} = natEquals

ex : Bool
ex = (1 ∷ 2 ∷ 3 ∷ []) == (1 ∷ 2 ∷ []) -- false





Note the two calls to _==_ in the right-hand side of the second clause. The
first uses the Eq A instance and the second uses a recursive call to
eqList. In the example ex, instance resolution, needing a value of type Eq
(List Nat), will try to use the eqList instance and find that it needs an
instance argument of type Eq Nat, it will then solve that with eqNat
and return the solution eqList {{eqNat}}.


Note

At the moment there is no termination check on instances, so it is possible
to construct non-sensical instances like
loop : ∀ {a} {A : Set a} {{_ : Eq A}} → Eq A.
To prevent looping in cases like this, the search depth of instance search
is limited, and once the maximum depth is reached, a type error will be
thrown. You can set the maximum depth using the --instance-search-depth
flag.




Constructor instances

Although instance arguments are most commonly used for record types, mimicking
Haskell-style type classes, they can also be used with data types. In this case
you often want the constructors to be instances, which is achieved by declaring
them inside an instance block. Typically arguments to constructors are not
instance arguments, so during instance resolution explicit arguments are
treated as instance arguments. See instance resolution below for the details.

A simple example of a constructor that can be made an instance is the
reflexivity constructor of the equality type:

data _≡_ {a} {A : Set a} (x : A) : A → Set a where
  instance refl : x ≡ x





This allows trivial equality proofs to be inferred by instance resolution,
which can make working with functions that have preconditions less of a burden.
As an example, here is how one could use this to define a function that takes a
natural number and gives back a Fin n (the type of naturals smaller than
n):

data Fin : Nat → Set where
  zero : ∀ {n} → Fin (suc n)
  suc  : ∀ {n} → Fin n → Fin (suc n)

mkFin : ∀ {n} (m : Nat) {{_ : suc m - n ≡ 0}} → Fin n
mkFin {zero}  m {{}}
mkFin {suc n} zero    = zero
mkFin {suc n} (suc m) = suc (mkFin m)

five : Fin 6
five = mkFin 5 -- OK





In the first clause of mkFin we use an absurd pattern to discharge the impossible assumption suc m ≡ 0.  See
the next section for another example of constructor instances.

Record fields can also be declared instances, with the effect that the
corresponding projection function is considered a top-level instance.






Examples


Proof search

Instance arguments are useful not only for Haskell-style type classes, but they
can also be used to get some limited form of proof search (which, to be fair,
is also true for Haskell type classes). Consider the following type, which
models a proof that a particular element is present in a list as the index at
which the element appears:

infix 4 _∈_
data _∈_ {A : Set} (x : A) : List A → Set where
  instance
    zero : ∀ {xs} → x ∈ x ∷ xs
    suc  : ∀ {y xs} → x ∈ xs → x ∈ y ∷ xs





Here we have declared the constructors of _∈_ to be instances, which allows
instance resolution to find proofs for concrete cases. For example,

ex₁ : 1 + 2 ∈ 1 ∷ 2 ∷ 3 ∷ 4 ∷ []
ex₁ = it  -- computes to suc (suc zero)

ex₂ : {A : Set} (x y : A) (xs : List A) → x ∈ y ∷ y ∷ x ∷ xs
ex₂ x y xs = it  -- suc (suc zero)

ex₃ : {A : Set} (x y : A) (xs : List A) {{i : x ∈ xs}} → x ∈ y ∷ y ∷ xs
ex₃ x y xs = it  -- suc (suc i)





It will fail, however, if there are more than one solution, since instance
arguments must be unique. For example,

fail₁ : 1 ∈ 1 ∷ 2 ∷ 1 ∷ []
fail₁ = it  -- ambiguous: zero or suc (suc zero)

fail₂ : {A : Set} (x y : A) (xs : List A) {{i : x ∈ xs}} → x ∈ y ∷ x ∷ xs
fail₂ x y xs = it -- suc zero or suc (suc i)








Dependent instances

Consider a variant on the Eq class where the equality function produces a
proof in the case the arguments are equal:

record Eq {a} (A : Set a) : Set a where
  field
    _==_ : (x y : A) → Maybe (x ≡ y)

open Eq {{...}} public





A simple boolean-valued equality function is problematic for types with
dependencies, like the Σ-type

data Σ {a b} (A : Set a) (B : A → Set b) : Set (a ⊔ b) where
  _,_ : (x : A) → B x → Σ A B





since given two pairs x , y and x₁ , y₁, the types of the second
components y and y₁ can be completely different and not admit an
equality test. Only when x and x₁ are really equal can we hope to
compare y and y₁. Having the equality function return a proof means
that we are guaranteed that when x and x₁ compare equal, they really
are equal, and comparing y and y₁ makes sense.

An Eq instance for Σ can be defined as follows:

instance
  eqΣ : ∀ {a b} {A : Set a} {B : A → Set b} {{_ : Eq A}} {{_ : ∀ {x} → Eq (B x)}} → Eq (Σ A B)
  _==_ {{eqΣ}} (x , y) (x₁ , y₁) with x == x₁
  _==_ {{eqΣ}} (x , y) (x₁ , y₁)    | nothing = nothing
  _==_ {{eqΣ}} (x , y) (.x , y₁)    | just refl with y == y₁
  _==_ {{eqΣ}} (x , y) (.x , y₁)    | just refl    | nothing   = nothing
  _==_ {{eqΣ}} (x , y) (.x , .y)    | just refl    | just refl = just refl





Note that the instance argument for B states that there should be an Eq
instance for B x, for any x : A. The argument x must be implicit,
indicating that it needs to be inferred by unification whenever the B
instance is used. See instance resolution below for more details.








Instance resolution

Given a goal that should be solved using instance resolution we proceed in the
following four stages:


	Verify the goal

	First we check that the goal is not already solved. This can happen if there
are unification constraints determining the
value, or if it is of singleton record type and thus solved by
eta-expansion.

Next we check that the goal type has the right shape to be solved by instance
resolution. It should be of the form {Γ} → C vs, where the target type
C is a variable from the context or the name of a data or record type,
and {Γ} denotes a telescope of implicit arguments. If this is not the
case instance resolution fails with an error message[1].

Finally we have to check that there are no unconstrained
metavariables in vs. A metavariable α is
considered constrained if it appears in an argument that is determined by the
type of some later argument, or if there is an existing constraint of the
form α us = C vs, where C inert (i.e. a data or type constructor).
For example, α is constrained in T α xs if T : (n : Nat) → Vec A
n → Set, since the type of the second argument of T determines the value
of the first argument. The reason for this restriction is that instance
resolution risks looping in the presence of unconstrained metavariables. For
example, suppose the goal is Eq α for some metavariable α. Instance
resolution would decide that the eqList instance was applicable if
setting α := List β for a fresh metavariable β, and then proceed to
search for an instance of Eq β.



	Find candidates

	In the second stage we compute a set of candidates. Let-bound variables and top-level definitions in scope are candidates if they
are defined in an instance block. Lambda-bound variables, i.e. variables
bound in lambdas, function types, left-hand sides, or module parameters, are
candidates if they are bound as instance arguments using {{ }}.
Only candidates that compute something of type C us, where C is the
target type computed in the previous stage, are considered.

	Check the candidates

	We attempt to use each candidate in turn to build an instance of the goal
type {Γ} → C vs. First we extend the current context by Γ. Then,
given a candidate c : Δ → A we generate fresh metavariables αs : Δ
for the arguments of c, with ordinary metavariables for implicit
arguments, and instance metavariables, solved by a recursive call to instance
resolution, for explicit arguments and instance arguments.

Next we unify A[Δ := αs] with C vs and apply
instance resolution to the instance metavariables in αs. Both unification
and instance resolution have three possible outcomes: yes, no, or
maybe. In case we get a no answer from any of them, the current candidate
is discarded, otherwise we return the potential solution λ {Γ} → c αs.



	Compute the result

	From the previous stage we get a list of potential solutions. If the list is
empty we fail with an error saying that no instance for C vs could be
found (no). If there is a single solution we use it to solve the goal
(yes), and if there are multiple solutions we check if they are all equal.
If they are, we solve the goal with one of them (yes), but if they are not,
we postpone instance resolution (maybe), hoping that some of the maybes
will turn into nos once we know more about the involved metavariables.

If there are left-over instance problems at the end of type checking, the
corresponding metavariables are printed in the Emacs status buffer together
with their types and source location. The candidates that gave rise to
potential solutions can be printed with the show constraints command (C-c C-=).








	[1]	Instance goal verification is buggy at the moment. See issue
#1322 [https://github.com/agda/agda/issues/1322].
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Irrelevance


Note

This is a stub.
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Lambda Abstraction


Pattern matching lambda

Anonymous pattern matching functions can be defined using the syntax:

\ { p11 .. p1n -> e1 ; … ; pm1 .. pmn -> em }





(where, as usual, \ and -> can be replaced by λ and →). Internally this is translated into a function definition of the following form:

.extlam p11 .. p1n = e1
…
.extlam pm1 .. pmn = em





This means that anonymous pattern matching functions are generative. For instance, refl will not be accepted as an inhabitant of the type

(λ { true → true ; false → false }) ≡
(λ { true → true ; false → false })





because this is equivalent to extlam1 ≡ extlam2 for some distinct fresh names extlam1 and extlam2.
Currently the where and with constructions are not allowed in (the top-level clauses of) anonymous pattern matching functions.

Examples:

and : Bool → Bool → Bool
and = λ { true x → x ; false _ → false }

xor : Bool → Bool → Bool
xor = λ { true  true  → false
        ; false false → false
        ; _     _     → true
        }

fst : {A : Set} {B : A → Set} → Σ A B → A
fst = λ { (a , b) → a }

snd : {A : Set} {B : A → Set} (p : Σ A B) → B (fst p)
snd = λ { (a , b) → b }











          

      

      

    

  

  
    
    
    Local Definitions: let and where
    
    

    
 
  
  

    
      
          
            
  
Local Definitions: let and where

There are two ways of declaring local definitions in Agda:


	let-expressions

	where-blocks




let-expressions

A let-expression defines an abbreviation.
In other words, the expression that we define in a let-expression
can neither be recursive nor defined by pattern matching.

Example:

f : Nat
f = let h : Nat → Nat
        h m = suc (suc m)
    in  h zero + h (suc zero)





let-expressions have the general form

let f : A₁ → … → Aₙ → A
    f x₁ … xₙ = e
in  e’





After type-checking,
the meaning of this is simply the substitution e’[f := λ x₁ … xₙ → e].
Since Agda substitutes away let-bindings, they do not show up in terms
Agda prints, nor in the goal display in interactive mode.




where-blocks

where-blocks are much more powerful than let-expressions, as they
support arbitrary local definitions.
A where can be attached to any function clause.

where-blocks have the general form

clause
  where
  decls





or

clause
  module M where
  decls





A simple instance is

g ps = e
  where
  f : A₁ → … → Aₙ → A
  f p₁₁ … p₁ₙ= e₁
  …
  …
  f pₘ₁ … pₘₙ= eₘ





Here, the pᵢⱼ are patterns of the corresponding types and eᵢ is an expression that can contain occurrences of f.
Functions defined with a where-expression must follow the rules for general definitions by pattern matching.

Example:

reverse : {A : Set} → List A → List A
reverse {A} xs = rev-append xs []
  where
  rev-append : List A → List A → List A
  rev-append [] ys = ys
  rev-append (x ∷ xs) ys = rev-append xs (x ∷ ys)






Variable scope

The pattern variables of the parent clause of the where-block are in
scope; in the previous example, these are A and xs.  The
variables bound by the type signature of the parent clause are not in
scope.  This is why we added the hidden binder {A}.




Scope of the local declarations

The where-definitions are not visible outside of the clause that
owns these definitions (the parent clause).  If the where-block is
given a name (form module M where), then the definitions are
available as qualified by M, since module M is visible even
outside of the parent clause.  The special form of an anonymous module
(module _ where) makes the definitions visible outside of the
parent clause without qualification.

If the parent function of a named where-block
(form module M where) is private,
then module M is also private.
However, the declarations inside M are not private unless declared
so explicitly.  Thus, the following example scope checks fine:

module Parent₁ where
  private
    parent = local
      module Private where
      local = Set
  module Public = Private

test₁ = Parent₁.Public.local





Likewise, a private declaration for a parent function does not
affect the privacy of local functions defined under a
module _ where-block:

module Parent₂ where
  private
    parent = local
      module _ where
      local = Set

test₂ = Parent₂.local





They can be declared private explicitly, though:

module Parent₃ where
  parent = local
    module _ where
    private
      local = Set





Now, Parent₃.local is not in scope.

A private declaration for the parent of an ordinary
where-block has no effect on the local definitions, of course.
They are not even in scope.




Proving properties

Sometimes one needs to refer to local definitions in proofs about the
parent function.  In this case, the module ⋯ where variant is preferable.

reverse : {A : Set} → List A → List A
reverse {A} xs = rev-append xs []
   module Rev where
   rev-append : List A → List A → List A
   rev-append [] ys = ys
   rev-append (x :: xs) ys = rev-append xs (x :: ys)





This gives us access to the local function as

Rev.rev-append : {A : Set} (xs : List A) → List A → List A → List A





Alternatively, we can define local
functions as private to the module we are working in; hence, they
will not be visible in any module that imports this module but it will
allow us to prove some properties about them.

private
   rev-append : {A : Set} → List A → List A → List A
   rev-append []        ys = ys
   rev-append (x ∷ xs) ys = rev-append xs (x ∷ ys)

reverse' : {A : Set} → List A → List A
reverse' xs = rev-append xs []








More Examples (for Beginners)

Using a let-expression

tw-map : {A : Set} → List A → List (List A)
tw-map {A} xs = let twice : List A → List A
                    twice xs = xs ++ xs
                in  map (\ x → twice [ x ]) xs





Same definition but with less type information

tw-map' : {A : Set} → List A → List (List A)
tw-map' {A} xs = let twice : _
                     twice xs = xs ++ xs
                 in  map (\ x → twice [ x ]) xs





Same definition but with a where-expression

tw-map'' : {A : Set} → List A → List (List A)
tw-map'' {A} xs =  map (\ x → twice [ x ]) xs
   where twice : List A → List A
         twice xs = xs ++ xs





Even less type information using let

f : Nat → List Nat
f zero    = [ zero ]
f (suc n) = let sing = [ suc n ]
            in  sing ++ f n





Same definition using where

f' : Nat → List Nat
f' zero = [ zero ]
f' (suc n) = sing ++ f' n
   where  sing = [ suc n ]





More than one definition in a let:

h : Nat → Nat
h n = let add2 : Nat
          add2 = suc (suc n)

          twice : Nat → Nat
          twice m = m * m

      in twice add2





More than one definition in a where:

g : Nat → Nat
g n = fib n + fact n
 where fib : Nat → Nat
       fib zero = suc zero
       fib (suc zero) = suc zero
       fib (suc (suc n)) = fib (suc n) + fib n

       fact : Nat → Nat
       fact zero = suc zero
       fact (suc n) = suc n * fact n





Combining let and where:

k : Nat → Nat
k n = let aux : Nat → Nat
          aux m = pred (g m) + h m
      in aux (pred n)
  where pred : Nat → Nat
        pred zero = zero
        pred (suc m) = m
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Lexical Structure

Agda code is written in UTF-8 encoded plain text files with the extension
.agda. Most unicode characters can be used in identifiers and whitespace is
important, see Names and Layout below.


Tokens


Keywords and special symbols

Most non-whitespace unicode can be used as part of an Agda name, but there are
two kinds of exceptions:


	special symbols

	Characters with special meaning that cannot appear at all in a name. These are
.;{}()@".

	keywords

	Reserved words that cannot appear as a name part, but can appear
in a name together with other characters.

= | -> → : ? \ λ ∀ ..
... abstract codata
coinductive
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Literal Overloading


Natural numbers

By default natural number literals are
mapped to the built-in natural number type. This can be
changed with the FROMNAT built-in, which binds to a function accepting a
natural number:

{-# BUILTIN FROMNAT fromNat #-}





This causes natural number literals n to be desugared to fromNat n.
Note that the desugaring happens before implicit argument are inserted so fromNat can have any number of
implicit or instance arguments. This can be
exploited to support overloaded literals by defining a type class containing fromNat:

{-# BUILTIN FROMNAT fromNat #-}





This definition requires that any natural number can be mapped into the given
type, so it won’t work for types like Fin n. This can be solved by refining
the Number class with an additional constraint:

record Number {a} (A : Set a) : Set (lsuc a) where
  field
    Constraint : Nat → Set a
    fromNat : (n : Nat) {{_ : Constraint n}} → A

open Number {{...}} public using (fromNat)

{-# BUILTIN FROMNAT fromNat #-}





This is the definition used in Agda.Builtin.FromNat. A Number instance
for Fin n can then be defined as follows:

data IsTrue : Bool → Set where
  itis : IsTrue true

instance
  indeed : IsTrue true
  indeed = itis

_<?_ : Nat → Nat → Bool
zero <? zero = false
zero <? suc y = true
suc x <? zero = false
suc x <? suc y = x <? y

natToFin : ∀ {n} (m : Nat) {{_ : IsTrue (m <? n)}} → Fin n
natToFin {zero} zero {{()}}
natToFin {zero} (suc m) {{()}}
natToFin {suc n} zero {{itis}} = zero
natToFin {suc n} (suc m) {{t}} = suc (natToFin m)

instance
  NumFin : ∀ {n} → Number (Fin n)
  Number.Constraint (NumFin {n}) k = IsTrue (k <? n)
  Number.fromNat    NumFin       k = natToFin k








Negative numbers

Negative integer literals have no default mapping and can only be used through
the FROMNEG built-in. Binding this to a function fromNeg causes
negative integer literals -n to be desugared to fromNeg n, where n
is a built-in natural number. From Agda.Builtin.FromNeg:

record Negative {a} (A : Set a) : Set (lsuc a) where
  field
    Constraint : Nat → Set a
    fromNeg : (n : Nat) {{_ : Constraint n}} → A

open Negative {{...}} public using (fromNeg)
{-# BUILTIN FROMNEG fromNeg #-}








Strings

String literals are overloaded with
the FROMSTRING built-in, which works just like FROMNAT. If it is not
bound string literals map to built-in strings. From
Agda.Builtin.FromString:

record IsString {a} (A : Set a) : Set (lsuc a) where
  field
    Constraint : String → Set a
    fromString : (s : String) {{_ : Constraint s}} → A

open IsString {{...}} public using (fromString)
{-# BUILTIN FROMSTRING fromString #-}








Other types

Currently only integer and string literals can be overloaded.
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Mixfix Operators

A name containing one or more name parts and one or more _ can be used as an operator where the arguments go in place of the _. For instance, an application of the name if_then_else_ to arguments x, y, and z can be written either as a normal application if_then_else_ x y z or as an operator application if x then y else z.

Examples:

_and_ : Bool → Bool → Bool
true and x = x
false and _ = false

if_then_else_ : {A : Set} → Bool → A → A → A
if true then x else y = x
if false then x else y = y

_⇒_   : Bool → Bool → Bool
true  ⇒ b = b
false ⇒ _ = true






Precedence

Consider the expression true and false ⇒ false.
Depending on which of _and_ and _⇒_ has more precedence,
it can either be read as (false and true) ⇒ false = true,
or as false and (true ⇒ false) = true.

Each operator is associated to a precedence, which is an integer
(can be negative!).
The default precedence for an operator is 20.

If we give _and_ more precedence than _⇒_, then we will get the first result:

infix 30 _and_
-- infix 20 _⇒_ (default)

p-and : {x y z : Bool} →  x and y ⇒ z  ≡  (x and y) ⇒ z
p-and = refl

e-and : false and true ⇒ false  ≡  true
e-and = refl





But, if we declare a new operator _and’_
and give it less precedence than
_⇒_, then we will get the second result:

_and’_ : Bool → Bool → Bool
_and’_ = _and_
infix 15 _and’_
-- infix 20 _⇒_ (default)

p-⇒ : {x y z : Bool} →  x and’ y ⇒ z  ≡  x and’ (y ⇒ z)
p-⇒ = refl

e-⇒ : false and’ true ⇒ false  ≡  false
e-⇒ = refl








Associativity

Consider the expression true ⇒ false ⇒ false. Depending on whether _⇒_ is
associates to the left or to the right, it can be read as
(false ⇒ true) ⇒ false = false, or false ⇒ (true ⇒ false) = true,
respectively.

If we declare an operator _⇒_ as infixr, it will associate to the right:

infixr 20 _⇒_

p-right : {x y z : Bool} →  x ⇒ y ⇒ z  ≡  x ⇒ (y ⇒ z)
p-right = refl

e-right : false ⇒ true ⇒ false  ≡  true
e-right = refl





If we declare an operator _⇒’_ as infixl, it will associate to the left:

infixl 20 _⇒’_

_⇒’_ : Bool → Bool → Bool
_⇒’_ = _⇒_

p-left : {x y z : Bool} →  x ⇒’ y ⇒’ z  ≡  (x ⇒’ y) ⇒’ z
p-left = refl

e-left : false ⇒’ true ⇒’ false  ≡  false
e-left = refl








Ambiguity and Scope

If you have not yet declared the fixity of an operator, Agda will
complain if you try to use ambiguously:

e-ambiguous : Bool
e-ambiguous = true ⇒ true ⇒ true





Could not parse the application true ⇒ true ⇒ true
Operators used in the grammar:
  ⇒ (infix operator, level 20)





Fixity declarations may appear anywhere in a module that other
declarations may appear. They then apply to the entire scope in which
they appear (i.e. before and after, but not outside).
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Module System


Module application




Anonymous modules




Basics

First let us introduce some terminology. A definition is a syntactic construction defining an entity such as a function or a datatype. A name is a string used to identify definitions. The same definition can have many names and at different points in the program it will have different names. It may also be the case that two definitions have the same name. In this case there will be an error if the name is used.

The main purpose of the module system is to structure the way names are used in a program. This is done by organising the program in an hierarchical structure of modules where each module contains a number of definitions and submodules. For instance,

module Main where

  module B where
    f : Nat → Nat
    f n = suc n

  g : Nat → Nat → Nat
  g n m = m





Note that we use indentation to indicate which definitions are part of a module. In the example f is in the module Main.B and g is in Main. How to refer to a particular definition is determined by where it is located in the module hierarchy. Definitions from an enclosing module are referred to by their given names as seen in the type of f above. To access a definition from outside its defining module a qualified name has to be used.

module Main₂ where

  module B where
    f : Nat → Nat
    f n = suc n

  ff : Nat → Nat
  ff x = B.f (B.f x)





To be able to use the short names for definitions in a module the module has to be opened.

module Main₃ where

  module B where
    f : Nat → Nat
    f n = suc n

  open B

  ff : Nat → Nat
  ff x = f (f x)





If A.qname refers to a definition d then after open A, qname will also refer to d. Note that qname can itself be a qualified name. Opening a module only introduces new names for a definition, it never removes the old names. The policy is to allow the introduction of ambiguous names, but give an error if an ambiguous name is used.

Modules can also be opened within a local scope by putting the open B within a where clause:

ff₁ : Nat → Nat
ff₁ x = f (f x) where open B








Private definitions

To make a definition inaccessible outside its defining module it can be declared private. A private definition is treated as a normal definition inside the module that defines it, but outside the module the definition has no name. In a dependently type setting there are some problems with private definitions—since the type checker performs computations, private names might show up in goals and error messages. Consider the following (contrived) example

module Main₄ where
  module A where

    private
      IsZero’ : Nat → Set
      IsZero’ zero    = ⊤
      IsZero’ (suc n) = ⊥

    IsZero : Nat → Set
    IsZero n = IsZero’ n

  open A
  prf : (n : Nat) → IsZero n
  prf n = {!!}





The type of the goal ?0 is IsZero n which normalises to IsZero’ n. The question is how to display this normal form to the user. At the point of ?0 there is no name for IsZero’. One option could be try to fold the term and print IsZero n. This is a very hard problem in general, so rather than trying to do this we make it clear to the user that IsZero’ is something that is not in scope and print the goal as .Main.A.IsZero’ n. The leading dot indicates that the entity is not in scope. The same technique is used for definitions that only have ambiguous names.

In effect using private definitions means that from the user’s perspective we do not have subject reduction. This is just an illusion, however—the type checker has full access to all definitions.




Name modifiers

An alternative to making definitions private is to exert finer control over what names are introduced when opening a module. This is done by qualifying an open statement with one or more of the modifiers using, hiding, or renaming. You can combine both using and hiding with renaming, but not with each other. The effect of

open A using (xs) renaming (ys to zs)





is to introduce the names xs and zs where xs refers to the same definition as A.xs and zs refers to A.ys. Note that if xs and ys overlap there will be two names introduced for the same definition. We do not permit xs and zs to overlap. The other forms of opening are defined in terms of this one. Let A denote all the (public) names in A. Then

open A renaming (ys to zs)
== open A hiding () renaming (ys to zs)

open A hiding (xs) renaming (ys to zs)
== open A using (A ; xs ; ys) renaming (ys to zs)





An omitted renaming modifier is equivalent to an empty renaming.




Re-exporting names

A useful feature is the ability to re-export names from another module. For instance, one may want to create a module to collect the definitions from several other modules. This is achieved by qualifying the open statement with the public keyword:

module Example where

  module Nat₁ where

    data Nat₁ : Set where
      zero : Nat₁
      suc  : Nat₁ → Nat₁

  module Bool₁ where

    data Bool₁ : Set where
      true false : Bool₁

  module Prelude where

    open Nat₁  public
    open Bool₁ public

    isZero : Nat₁ → Bool₁
    isZero zero    = true
    isZero (suc _) = false





The module Prelude above exports the names Nat, zero, Bool, etc., in addition to isZero.




Parameterised modules

So far, the module system features discussed have dealt solely with scope manipulation. We now turn our attention to some more advanced features.

It is sometimes useful to be able to work temporarily in a given signature. For instance, when defining functions for sorting lists it is convenient to assume a set of list elements A and an ordering over A. In Coq this can be done in two ways: using a functor, which is essentially a function between modules, or using a section. A section allows you to abstract some arguments from several definitions at once. We introduce parameterised modules analogous to sections in Coq. When declaring a module you can give a telescope of module parameters which are abstracted from all the definitions in the module. For instance, a simple implementation of a sorting function looks like this:

module Sort (A : Set)(_≤_ : A → A → Bool) where
  insert : A → List A → List A
  insert x [] = x ∷ []
  insert x (y ∷ ys) with x ≤ y
  insert x (y ∷ ys)    | true  = x ∷ y ∷ ys
  insert x (y ∷ ys)    | false = y ∷ insert x ys

  sort : List A → List A
  sort []       = []
  sort (x ∷ xs) = insert x (sort xs)





As mentioned parametrising a module has the effect of abstracting the parameters over the definitions in the module, so outside the Sort module we have

Sort.insert : (A : Set)(_≤_ : A → A → Bool) →
               A → List A → List A
Sort.sort   : (A : Set)(_≤_ : A → A → Bool) →
               List A → List A





For function definitions, explicit module parameter become explicit arguments to the abstracted function, and implicit parameters become implicit arguments. For constructors, however, the parameters are always implicit arguments. This is a consequence of the fact that module parameters are turned into datatype parameters, and the datatype parameters are implicit arguments to the constructors. It also happens to be the reasonable thing to do.

Something which you cannot do in Coq is to apply a section to its arguments. We allow this through the module application statement. In our example:

module SortNat = Sort Nat leqNat





This will define a new module SortNat as follows

module SortNat where
  insert : Nat → List Nat → List Nat
  insert = Sort.insert Nat leqNat

  sort : List Nat → List Nat
  sort = Sort.sort Nat leqNat





The new module can also be parameterised, and you can use name modifiers to control what definitions from the original module are applied and what names they have in the new module. The general form of a module application is

module M1 Δ = M2 terms modifiers





A common pattern is to apply a module to its arguments and then open the resulting module. To simplify this we introduce the short-hand

open module M1 Δ = M2 terms [public] mods





for

module M1 Δ = M2 terms mods
open M1 [public]








Splitting a program over multiple files

When building large programs it is crucial to be able to split the program over multiple files and to not have to type check and compile all the files for every change. The module system offers a structured way to do this. We define a program to be a collection of modules, each module being defined in a separate file. To gain access to a module defined in a different file you can import the module:

import M





In order to implement this we must be able to find the file in which a module is defined. To do this we require that the top-level module A.B.C is defined in the file C.agda in the directory A/B/. One could imagine instead to give a file name to the import statement, but this would mean cluttering the program with details about the file system which is not very nice.

When importing a module M the module and its contents is brought into scope as if the module had been defined in the current file. In order to get access to the unqualified names of the module contents it has to be opened. Similarly to module application we introduce the short-hand

open import M





for

import M
open M





Sometimes the name of an imported module clashes with a local module. In this case it is possible to import the module under a different name.

import M as M’





It is also possible to attach modifiers to import statements, limiting or changing what names are visible from inside the module.




Datatype modules

When you define a datatype it also defines a module so constructors can now be referred to qualified by their data type.
For instance, given:

module DatatypeModules where

  data Nat₂ : Set where
    zero : Nat₂
    suc  : Nat₂ → Nat₂

  data Fin : Nat₂ → Set where
    zero : ∀ {n} → Fin (suc n)
    suc  : ∀ {n} → Fin n → Fin (suc n)





you can refer to the constructors unambiguously as Nat₂.zero, Nat₂.suc, Fin.zero, and Fin.suc (Nat₂ and Fin are modules containing the respective constructors). Example:

inj : (n m : Nat₂) → Nat₂.suc n ≡ suc m → n ≡ m
inj .m m refl = refl





Previously you had to write something like

inj₁ : (n m : Nat₂) → _≡_ {A = Nat₂} (suc n) (suc m) → n ≡ m
inj₁ .m m refl = refl





to make the type checker able to figure out that you wanted the natural number suc in this case.




Record update syntax

Assume that we have a record type and a corresponding value:

record MyRecord : Set where
  field
    a b c : Nat

old : MyRecord
old = record { a = 1; b = 2; c = 3 }





Then we can update (some of) the record value’s fields in the following way:

new : MyRecord
new = record old { a = 0; c = 5 }





Here new normalises to record { a = 0; b = 2; c = 5 }. Any expression yielding a value of type MyRecord can be used instead of old.

Record updating is not allowed to change types: the resulting value must have the same type as the original one, including the record parameters. Thus, the type of a record update can be inferred if the type of the original record can be inferred.

The record update syntax is expanded before type checking. When the expression

record old { upd-fields }





is checked against a record type R, it is expanded to

let r = old in record { new-fields }





where old is required to have type R and new-fields is defined as
follows: for each field x in R,



	if x = e is contained in upd-fields then x = e is included in
new-fields, and otherwise

	if x is an explicit field then x = R.x r is included in
new-fields, and

	if x is an implicit or instance field, then it is omitted from
new-fields.






(Instance arguments are explained below.) The reason for treating implicit and instance fields specially is to allow code like the following:

data Vec (A : Set) : Nat → Set where
  [] : Vec A zero
  _∷_ : ∀{n} → A → Vec A n → Vec A (suc n)

record R : Set where
  field
    {length} : Nat
    vec      : Vec Nat length
    -- More fields ...

xs : R
xs = record { vec = 0 ∷ 1 ∷ 2 ∷ [] }

ys = record xs { vec = 0 ∷ [] }





Without the special treatment the last expression would need to include a new binding for length (for instance “length = _”).
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Mutual Recursion

Mutual recursive functions can be written by placing the type signatures of all mutually recursive function before their definitions:

f : A
g : B[f]
f = a[f, g]
g = b[f, g].





You can mix arbitrary declarations, such as modules and postulates, with mutually recursive definitions.
For data types and records the following syntax is used to separate the declaration from the definition:

-- Declaration.
data Vec (A : Set) : Nat → Set  -- Note the absence of ‘where’.

-- Definition.
data Vec A where
  []   : Vec A zero
  _::_ : {n : Nat} → A → Vec A n → Vec A (suc n)

-- Declaration.
record Sigma (A : Set) (B : A → Set) : Set

-- Definition.
record Sigma A B where
  constructor _,_
  field fst : A
        snd : B fst





When making separated declarations/definitions private or abstract you should attach the private keyword to the declaration and the abstract keyword to the definition. For instance, a private, abstract function can be defined as

private
  f : A
abstract
  f = e






Old Syntax


Note

You are advised to avoid using this old syntax if possible, but the old syntax
is still supported.



Mutual recursive functions can be written by placing the type signatures of all mutually recursive function before their definitions:

mutual
  f : A
  f = a[f, g]

  g : B[f]
  g = b[f, g]





This alternative syntax desugars into the new syntax.
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Pattern Synonyms

A pattern synonym is a declaration that can be used on the left hand
side (when pattern matching) as well as the right hand side (in
expressions). For example:

data ℕ : Set where
  zero : ℕ
  suc  : ℕ → ℕ

pattern z    = zero
pattern ss x = suc (suc x)

f : ℕ → ℕ
f z       = z
f (suc z) = ss z
f (ss n)  = n





Pattern synonyms are implemented by substitution on the abstract
syntax, so definitions are scope-checked but not type-checked. They
are particularly useful for universe constructions.
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Positivity Checking


Note

This is a stub.




The NO_POSITIVITY_CHECK pragma


New in version 2.5.1.



The pragma switches off the positivity checker for data/record
definitions and mutual blocks.

The pragma must precede a data/record definition or a mutual
block. The pragma cannot be used in --safe mode.

Examples:


	Skipping a single data definition:

{-# NO_POSITIVITY_CHECK #-}
data D : Set where
  lam : (D → D) → D







	Skipping a single record definition:

{-# NO_POSITIVITY_CHECK #-}
record U : Set where
  field ap : U → U










	Skipping an old-style mutual block. Somewhere within a mutual block
before a data/record definition:

mutual
  data D : Set where
    lam : (D → D) → D

  {-# NO_POSITIVITY_CHECK #-}
  record U : Set where
    field ap : U → U










	Skipping an old-style mutual block. Before the mutual keyword:

{-# NO_POSITIVITY_CHECK #-}
mutual
  data D : Set where
    lam : (D → D) → D

  record U : Set where
    field ap : U → U










	Skipping a new-style mutual block. Anywhere before the declaration
or the definition of a data/record in the block:

record U : Set
data D   : Set

record U where
  field ap : U → U

{-# NO_POSITIVITY_CHECK #-}
data D where
  lam : (D → D) → D












POLARITY pragmas

Polarity pragmas can be attached to postulates. The polarities express
how the postulate’s arguments are used. The following polarities
are available:


	_:  Unused.

	++: Strictly positive.

	+:  Positive.

	-:  Negative.

	*:  Unknown/mixed.



Polarity pragmas have the form {-# POLARITY name <zero or more
polarities> #-}, and can be given wherever fixity declarations can
be given. The listed polarities apply to the given postulate’s
arguments (explicit/implicit/instance), from left to right. Polarities
currently cannot be given for module parameters. If the postulate
takes n arguments (excluding module parameters), then the number of
polarities given must be between 0 and n (inclusive).

Polarity pragmas make it possible to use postulated type formers in
recursive types in the following way:

postulate
  ∥_∥ : Set → Set

{-# POLARITY ∥_∥ ++ #-}

data D : Set where
  c : ∥ D ∥ → D





Note that one can use postulates that may seem benign, together with
polarity pragmas, to prove that the empty type is inhabited:

postulate
  _⇒_    : Set → Set → Set
  lambda : {A B : Set} → (A → B) → A ⇒ B
  apply  : {A B : Set} → A ⇒ B → A → B

{-# POLARITY _⇒_ ++ #-}

data ⊥ : Set where

data D : Set where
  c : D ⇒ ⊥ → D

not-inhabited : D → ⊥
not-inhabited (c f) = apply f (c f)

d : D
d = c (lambda not-inhabited)

bad : ⊥
bad = not-inhabited d





Polarity pragmas are not allowed in safe mode.
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Postulates


Note

This is a stub.
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Pragmas

Pragmas are comments that are not ignored by Agda but have some
special meaning. The general format is:

{-# <PRAGMA_NAME> <arguments> #-}






Index of pragmas


	BUILTIN

	COMPILED

	COMPILED_DATA

	COMPILED_EXPORT

	COMPILED_TYPE

	IMPORT

	NO_POSITIVITY_CHECK

	NO_TERMINATION_CHECK

	NON_TERMINATING

	POLARITY

	TERMINATING
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Record Types



	Record declarations

	Record modules

	Eta-expansion

	Instance fields






Note

This is a stub.




Record declarations

Record types can be declared using the record keyword

record Pair (A B : Set) : Set where
  field
    fst : A
    snd : B





This defines a new type Pair : Set → Set → Set and two projection functions

Pair.fst : {A B : Set} → Pair A B → A
Pair.snd : {A B : Set} → Pair A B → B





Elements of record types can be defined using a record expression

p23 : Pair Nat Nat
p23 = record { fst = 2; snd = 3 }





or using Copatterns

p34 : Pair Nat Nat
Pair.fst p34 = 3
Pair.snd p34 = 4





Record types behaves much like single constructor datatypes (but see
eta-expansion below), and you can name the constructor using the constructor keyword

record Pair (A B : Set) : Set where
  constructor _,_
  field
    fst : A
    snd : B

p45 : Pair Nat Nat
p45 = 4 , 5






Note

Naming the constructor is not required to enable pattern matching against
record values. Record expression can appear as patterns.






Record modules

Along with a new type, a record declaration also defines a module containing
the projection functions. This allows records to be “opened”, bringing the
fields into scope. For instance

swap : {A B : Set} → Pair A B → Pair B A
swap p = snd , fst
  where open Pair p





It possible to add arbitrary definitions to the record module, by defining them
inside the record declaration

record Functor (F : Set → Set) : Set₁ where
  field
    fmap : ∀ {A B} → (A → B) → F A → F B

  _<$_ : ∀ {A B} → A → F B → F A
  x <$ fb = fmap (λ _ → x) fb






Note

In general new definitions need to appear after the field declarations, but
simple non-recursive function definitions without pattern matching can be
interleaved with the fields. The reason for this restriction is that the
type of the record constructor needs to be expressible using let-expressions.
In the example below D₁ can only contain declarations for which the
generated type of mkR is well-formed.

record R Γ : Setᵢ where
  constructor mkR
  field f₁ : A₁
  D₁
  field f₂ : A₂

mkR : ∀ {Γ} (f₁ : A₁) (let D₁) (f₂ : A₂) → R Γ










Eta-expansion




Instance fields

Instance fields, that is record fields marked with {{ }} can be used to
model “superclass” dependencies. For example:

record Eq (A : Set) : Set where
  field
    _==_ : A → A → Bool

open Eq {{...}}





record Ord (A : Set) : Set where
  field
    _<_ : A → A → Bool
    {{eqA}} : Eq A

open Ord {{...}} hiding (eqA)





Now anytime you have a function taking an Ord A argument the Eq A instance
is also available by virtue of η-expansion. So this works as you would expect:

_≤_ : {A : Set} {{OrdA : Ord A}} → A → A → Bool
x ≤ y = (x == y) || (x < y)





There is a problem however if you have multiple record arguments with conflicting
instance fields. For instance, suppose we also have a Num record with an Eq field

record Num (A : Set) : Set where
  field
    fromNat : Nat → A
    {{eqA}} : Eq A

open Num {{...}} hiding (eqA)

_≤3 : {A : Set} {{OrdA : Ord A}} {{NumA : Num A}} → A → Bool
x ≤3 = (x == fromNat 3) || (x < fromNat 3)





Here the Eq A argument to _==_ is not resolved since there are two conflicting
candidates: Ord.eqA OrdA and Num.eqA NumA. To solve this problem you can declare
instance fields as overlappable using the overlap keyword:

record Ord (A : Set) : Set where
  field
    _<_ : A → A → Bool
    overlap {{eqA}} : Eq A

open Ord {{...}} hiding (eqA)

record Num (A : Set) : Set where
  field
    fromNat : Nat → A
    overlap {{eqA}} : Eq A

open Num {{...}} hiding (eqA)

_≤3 : {A : Set} {{OrdA : Ord A}} {{NumA : Num A}} → A → Bool
x ≤3 = (x == fromNat 3) || (x < fromNat 3)





Whenever there are multiple valid candidates for an instance goal, if all candidates
are overlappable, the goal is solved by the left-most candidate. In the example above
that means that the Eq A goal is solved by the instance from the Ord argument.

Clauses for instance fields can be omitted when defining values of record
types. For instance we can define Nat instances for Eq, Ord and
Num as follows, leaving out cases for the eqA fields:

instance
  EqNat : Eq Nat
  _==_ {{EqNat}} = Agda.Builtin.Nat._==_

  OrdNat : Ord Nat
  _<_ {{OrdNat}} = Agda.Builtin.Nat._<_

  NumNat : Num Nat
  fromNat {{NumNat}} n = n
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Reflection


Builtin types


Names

The built-in QNAME type represents quoted names and comes equipped with
equality, ordering and a show function.

postulate Name : Set
{-# BUILTIN QNAME Name #-}

primitive
  primQNameEquality : Name → Name → Bool
  primQNameLess     : Name → Name → Bool
  primShowQName     : Name → String





Name literals are created using the quote keyword and can appear both in
terms and in patterns

nameOfNat : Name
nameOfNat = quote Nat

isNat : Name → Bool
isNat (quote Nat) = true
isNat _           = false





Note that the name being quoted must be in scope.




Metavariables

Metavariables are represented by the built-in AGDAMETA type. They have
primitive equality, ordering and show:

postulate Meta : Set
{-# BUILTIN AGDAMETA Meta #-}

primitive
  primMetaEquality : Meta → Meta → Bool
  primMetaLess     : Meta → Meta → Bool
  primShowMeta     : Meta → String





Builtin metavariables show up in reflected terms.




Literals

Literals are mapped to the built-in AGDALITERAL datatype. Given the appropriate
built-in binding for the types Nat, Float, etc, the AGDALITERAL datatype
has the following shape:

data Literal : Set where
  nat    : (n : Nat)    → Literal
  float  : (x : Float)  → Literal
  char   : (c : Char)   → Literal
  string : (s : String) → Literal
  name   : (x : Name)   → Literal
  meta   : (x : Meta)   → Literal

{-# BUILTIN AGDALITERAL   Literal #-}
{-# BUILTIN AGDALITNAT    nat     #-}
{-# BUILTIN AGDALITFLOAT  float   #-}
{-# BUILTIN AGDALITCHAR   char    #-}
{-# BUILTIN AGDALITSTRING string  #-}
{-# BUILTIN AGDALITQNAME  name    #-}
{-# BUILTIN AGDALITMETA   meta    #-}








Arguments

Arguments can be (visible), {hidden}, or {{instance}}:

data Visibility : Set where
  visible hidden instance′ : Visibility

{-# BUILTIN HIDING   Visibility #-}
{-# BUILTIN VISIBLE  visible    #-}
{-# BUILTIN HIDDEN   hidden     #-}
{-# BUILTIN INSTANCE instance′  #-}





Arguments can be relevant or irrelevant:

data Relevance : Set where
  relevant irrelevant : Relevance

{-# BUILTIN RELEVANCE  Relevance  #-}
{-# BUILTIN RELEVANT   relevant   #-}
{-# BUILTIN IRRELEVANT irrelevant #-}





Visibility and relevance characterise the behaviour of an argument:

data ArgInfo : Set where
  arg-info : (v : Visibility) (r : Relevance) → ArgInfo

data Arg (A : Set) : Set where
  arg : (i : ArgInfo) (x : A) → Arg A

{-# BUILTIN ARGINFO    ArgInfo  #-}
{-# BUILTIN ARGARGINFO arg-info #-}
{-# BUILTIN ARG        Arg      #-}
{-# BUILTIN ARGARG     arg      #-}








Patterns

Reflected patterns are bound to the AGDAPATTERN built-in using the
following data type.

data Pattern : Set where
  con    : (c : Name) (ps : List (Arg Pattern)) → Pattern
  dot    : Pattern
  var    : (s : String)  → Pattern
  lit    : (l : Literal) → Pattern
  proj   : (f : Name)    → Pattern
  absurd : Pattern

{-# BUILTIN AGDAPATTERN   Pattern #-}
{-# BUILTIN AGDAPATCON    con     #-}
{-# BUILTIN AGDAPATDOT    dot     #-}
{-# BUILTIN AGDAPATVAR    var     #-}
{-# BUILTIN AGDAPATLIT    lit     #-}
{-# BUILTIN AGDAPATPROJ   proj    #-}
{-# BUILTIN AGDAPATABSURD absurd  #-}








Name abstraction

data Abs (A : Set) : Set where
  abs : (s : String) (x : A) → Abs A

{-# BUILTIN ABS    Abs #-}
{-# BUILTIN ABSABS abs #-}








Terms

Terms, sorts and clauses are mutually recursive and mapped to the AGDATERM,
AGDASORT and AGDACLAUSE built-ins respectively. Types are simply
terms. Terms use de Bruijn indices to represent variables.

data Term : Set
data Sort : Set
data Clause : Set
Type = Term

data Term where
  var       : (x : Nat) (args : List (Arg Term)) → Term
  con       : (c : Name) (args : List (Arg Term)) → Term
  def       : (f : Name) (args : List (Arg Term)) → Term
  lam       : (v : Visibility) (t : Abs Term) → Term
  pat-lam   : (cs : List Clause) (args : List (Arg Term)) → Term
  pi        : (a : Arg Type) (b : Abs Type) → Term
  agda-sort : (s : Sort) → Term
  lit       : (l : Literal) → Term
  meta      : (x : Meta) → List (Arg Term) → Term
  unknown   : Term -- Treated as '_' when unquoting.

data Sort where
  set     : (t : Term) → Sort -- A Set of a given (possibly neutral) level.
  lit     : (n : Nat) → Sort  -- A Set of a given concrete level.
  unknown : Sort

data Clause where
  clause        : (ps : List (Arg Pattern)) (t : Term) → Clause
  absurd-clause : (ps : List (Arg Pattern)) → Clause

{-# BUILTIN AGDASORT    Sort   #-}
{-# BUILTIN AGDATERM    Term   #-}
{-# BUILTIN AGDACLAUSE  Clause #-}

{-# BUILTIN AGDATERMVAR         var       #-}
{-# BUILTIN AGDATERMCON         con       #-}
{-# BUILTIN AGDATERMDEF         def       #-}
{-# BUILTIN AGDATERMMETA        meta      #-}
{-# BUILTIN AGDATERMLAM         lam       #-}
{-# BUILTIN AGDATERMEXTLAM      pat-lam   #-}
{-# BUILTIN AGDATERMPI          pi        #-}
{-# BUILTIN AGDATERMSORT        agda-sort #-}
{-# BUILTIN AGDATERMLIT         lit       #-}
{-# BUILTIN AGDATERMUNSUPPORTED unknown   #-}

{-# BUILTIN AGDASORTSET         set     #-}
{-# BUILTIN AGDASORTLIT         lit     #-}
{-# BUILTIN AGDASORTUNSUPPORTED unknown #-}

{-# BUILTIN AGDACLAUSECLAUSE clause        #-}
{-# BUILTIN AGDACLAUSEABSURD absurd-clause #-}





Absurd lambdas λ () are quoted to extended lambdas with an absurd clause.

The built-in constructors AGDATERMUNSUPPORTED and AGDASORTUNSUPPORTED
are translated to meta variables when unquoting.




Declarations

There is a built-in type AGDADEFINITION representing definitions. Values of
this type is returned by the AGDATCMGETDEFINITION built-in described
below.

data Definition : Set where
  function    : (cs : List Clause) → Definition
  data-type   : (pars : Nat) (cs : List Name) → Definition  -- parameters and constructors
  record-type : (c : Name) → Definition                     -- name of data/record type
  data-cons   : (d : Name) → Definition                     -- name of constructor
  axiom       : Definition
  prim-fun    : Definition

{-# BUILTIN AGDADEFINITION                Definition  #-}
{-# BUILTIN AGDADEFINITIONFUNDEF          function    #-}
{-# BUILTIN AGDADEFINITIONDATADEF         data-type   #-}
{-# BUILTIN AGDADEFINITIONRECORDDEF       record-type #-}
{-# BUILTIN AGDADEFINITIONDATACONSTRUCTOR data-cons   #-}
{-# BUILTIN AGDADEFINITIONPOSTULATE       axiom       #-}
{-# BUILTIN AGDADEFINITIONPRIMITIVE       prim-fun    #-}








Type errors

Type checking computations (see below) can
fail with an error, which is a list of ErrorParts. This allows
metaprograms to generate nice errors without having to implement pretty
printing for reflected terms.

-- Error messages can contain embedded names and terms.
data ErrorPart : Set where
  strErr  : String → ErrorPart
  termErr : Term → ErrorPart
  nameErr : Name → ErrorPart

{-# BUILTIN AGDAERRORPART       ErrorPart #-}
{-# BUILTIN AGDAERRORPARTSTRING strErr    #-}
{-# BUILTIN AGDAERRORPARTTERM   termErr   #-}
{-# BUILTIN AGDAERRORPARTNAME   nameErr   #-}








Type checking computations

Metaprograms, i.e. programs that create other programs, run in a built-in type
checking monad TC:

postulate
  TC       : ∀ {a} → Set a → Set a
  returnTC : ∀ {a} {A : Set a} → A → TC A
  bindTC   : ∀ {a b} {A : Set a} {B : Set b} → TC A → (A → TC B) → TC B

{-# BUILTIN AGDATCM       TC       #-}
{-# BUILTIN AGDATCMRETURN returnTC #-}
{-# BUILTIN AGDATCMBIND   bindTC   #-}





The TC monad provides an interface to the Agda type checker using the
following primitive operations:

postulate
  -- Unify two terms, potentially solving metavariables in the process.
  unify : Term → Term → TC ⊤

  -- Throw a type error. Can be caught by catchTC.
  typeError : ∀ {a} {A : Set a} → List ErrorPart → TC A

  -- Block a type checking computation on a metavariable. This will abort
  -- the computation and restart it (from the beginning) when the
  -- metavariable is solved.
  blockOnMeta : ∀ {a} {A : Set a} → Meta → TC A

  -- Prevent current solutions of metavariables from being rolled back in
  -- case 'blockOnMeta' is called.
  commitTC : TC ⊤

  -- Backtrack and try the second argument if the first argument throws a
  -- type error.
  catchTC : ∀ {a} {A : Set a} → TC A → TC A → TC A

  -- Infer the type of a given term
  inferType : Term → TC Type

  -- Check a term against a given type. This may resolve implicit arguments
  -- in the term, so a new refined term is returned. Can be used to create
  -- new metavariables: newMeta t = checkType unknown t
  checkType : Term → Type → TC Term

  -- Compute the normal form of a term.
  normalise : Term → TC Term

  -- Compute the weak head normal form of a term.
  reduce : Term → TC Term

  -- Get the current context. Returns the context in reverse order, so that
  -- it is indexable by deBruijn index.
  getContext : TC (List (Arg Type))

  -- Extend the current context with a variable of the given type.
  extendContext : ∀ {a} {A : Set a} → Arg Type → TC A → TC A

  -- Set the current context. Takes a context telescope with the outer-most
  -- entry first, in contrast to 'getContext'.
  inContext : ∀ {a} {A : Set a} → List (Arg Type) → TC A → TC A

  -- Quote a value, returning the corresponding Term.
  quoteTC : ∀ {a} {A : Set a} → A → TC Term

  -- Unquote a Term, returning the corresponding value.
  unquoteTC : ∀ {a} {A : Set a} → Term → TC A

  -- Create a fresh name.
  freshName : String → TC Name

  -- Declare a new function of the given type. The function must be defined
  -- later using 'defineFun'. Takes an Arg Name to allow declaring instances
  -- and irrelevant functions. The Visibility of the Arg must not be hidden.
  declareDef : Arg Name → Type → TC ⊤

  -- Define a declared function. The function may have been declared using
  -- 'declareDef' or with an explicit type signature in the program.
  defineFun : Name → List Clause → TC ⊤

  -- Get the type of a defined name. Replaces 'primNameType'.
  getType : Name → TC Type

  -- Get the definition of a defined name. Replaces 'primNameDefinition'.
  getDefinition : Name → TC Definition

  -- Check if a name refers to a macro
  isMacro : Name → TC Bool

  -- Change the behaviour of inferType, checkType, quoteTC, getContext
  -- to normalise (or not) their results. The default behaviour is no
  -- normalisation.
  withNormalisation : ∀ {a} {A : Set a} → Bool → TC A → TC A

{-# BUILTIN AGDATCMUNIFY              unify              #-}
{-# BUILTIN AGDATCMTYPEERROR          typeError          #-}
{-# BUILTIN AGDATCMBLOCKONMETA        blockOnMeta        #-}
{-# BUILTIN AGDATCMCATCHERROR         catchTC            #-}
{-# BUILTIN AGDATCMINFERTYPE          inferType          #-}
{-# BUILTIN AGDATCMCHECKTYPE          checkType          #-}
{-# BUILTIN AGDATCMNORMALISE          normalise          #-}
{-# BUILTIN AGDATCMREDUCE             reduce             #-}
{-# BUILTIN AGDATCMGETCONTEXT         getContext         #-}
{-# BUILTIN AGDATCMEXTENDCONTEXT      extendContext      #-}
{-# BUILTIN AGDATCMINCONTEXT          inContext          #-}
{-# BUILTIN AGDATCMQUOTETERM          quoteTC            #-}
{-# BUILTIN AGDATCMUNQUOTETERM        unquoteTC          #-}
{-# BUILTIN AGDATCMFRESHNAME          freshName          #-}
{-# BUILTIN AGDATCMDECLAREDEF         declareDef         #-}
{-# BUILTIN AGDATCMDEFINEFUN          defineFun          #-}
{-# BUILTIN AGDATCMGETTYPE            getType            #-}
{-# BUILTIN AGDATCMGETDEFINITION      getDefinition      #-}
{-# BUILTIN AGDATCMCOMMIT             commitTC           #-}
{-# BUILTIN AGDATCMISMACRO            isMacro            #-}
{-# BUILTIN AGDATCMWITHNORMALISATION  withNormalisation  #-}










Metaprogramming

There are three ways to run a metaprogram (TC computation). To run a
metaprogram in a term position you use a macro. To run
metaprograms to create top-level definitions you can use the unquoteDecl
and unquoteDef primitives (see Unquoting Declarations).


Macros

Macros are functions of type t₁ → t₂ → .. → Term → TC ⊤ that are defined in
a macro block. The last argument is supplied by the type checker and will
be the representation of a metavariable that should be instantiated with the
result of the macro.

Macro application is guided by the type of the macro, where Term and
Name arguments are quoted before passed to the macro.  Arguments of any
other type are preserved as-is.

For example, the macro application f u v w where
f : Term → Name → Bool → Term → TC ⊤ desugars into:

unquote (f (quoteTerm u) (quote v) w)





where quoteTerm u takes a u of arbitrary type and returns its
representation in the Term data type, and unquote m runs a computation
in the TC monad. Specifically, when checking unquote m : A for some
type A the type checker proceeds as follows:



	Check m : Term → TC ⊤.

	Create a fresh metavariable hole : A.

	Let qhole : Term be the quoted representation of hole.

	Execute m qhole.

	Return (the now hopefully instantiated) hole.






Reflected macro calls are constructed using the def constructor, so given a
macro g : Term → TC ⊤ the term def (quote g) [] unquotes to a macro
call to g.


Note

The quoteTerm and unquote primitives are available in the language,
but it is recommended to avoid using them in favour of macros.



Limitations:



	Macros cannot be recursive. This can be worked around by defining the
recursive function outside the macro block and have the macro call the
recursive function.






Silly example:

macro
    plus-to-times : Term → Term → TC ⊤
    plus-to-times (def (quote _+_) (a ∷ b ∷ [])) hole = unify hole (def (quote _*_) (a ∷ b ∷ []))
    plus-to-times v hole = unify hole v

thm : (a b : Nat) → plus-to-times (a + b) ≡ a * b
thm a b = refl





Macros lets you write tactics that can be applied without any syntactic
overhead. For instance, suppose you have a solver:

magic : Type → Term





that takes a reflected goal and outputs a proof (when successful). You can then
define the following macro:

macro
  by-magic : Term → TC ⊤
  by-magic hole =
    bindTC (inferType hole) λ goal →
    unify hole (magic goal)





This lets you apply the magic tactic as a normal function:

thm : ¬ P ≡ NP
thm = by-magic








Unquoting Declarations

While macros let you write metaprograms to create terms, it is also useful to
be able to create top-level definitions. You can do this from a macro using the
declareDef and defineFun primitives, but there is no way to bring such
definitions into scope. For this purpose there are two top-level primitives
unquoteDecl and unquoteDef that runs a TC computation in a
declaration position. They both have the same form:

unquoteDecl x₁ .. xₙ = m
unquoteDef  x₁ .. xₙ = m





except that the list of names can be empty for unquoteDecl, but not for
unquoteDef. In both cases m should have type TC ⊤. The main
difference between the two is that unquoteDecl requires m to both
declare (with declareDef) and define (with defineFun) the xᵢ
whereas unquoteDef expects the xᵢ to be already declared. In other
words, unquoteDecl brings the xᵢ into scope, but unquoteDef
requires them to already be in scope.

In m the xᵢ stand for the names of the functions being defined (i.e.
xᵢ : Name) rather than the actual functions.

One advantage of unquoteDef over unquoteDecl is that
unquoteDef is allowed in mutual blocks, allowing mutually
recursion between generated definitions and hand-written definitions.
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Sizes help the termination checker by tracking the depth of data structures
across definition boundaries.

The built-in combinators for sizes are described in Sized types.


Example: Finite languages

See Traytel 2016.

Decidable languages can be represented as infinite trees. Each node has as many
children as the number of characters in the alphabet A. Each path from the root
of the tree to a node determines a possible word in the language. Each node
has a boolean label, which is true if and only if the word corresponding
to that node is in the language. In particular, the root node of the tree
is labelled true if and only if the word ε belongs to the language.

These infinite trees can be represented as the following coinductive data-type:

record Lang (i : Size) (A : Set) : Set where
  coinductive
  field
    ν : Bool
    δ : ∀{j : Size< i} → A → Lang j A

open Lang





As we said before, given a language a : Lang A, ν a ≡ true iff
ε ∈ a. On the other hand, the language δ a x : Lang A is the
Brzozowski derivative [https://en.wikipedia.org/wiki/Brzozowski_derivative] of a with respect to the character x, that is,
w ∈ δ a x iff xw ∈ a.

With this data type, we can define some regular languages. The first one, the
empty language, contains no words; so all the nodes are labelled false:

∅ : ∀ {i A}  → Lang i A
ν ∅ = false
δ ∅ _ = ∅





The second one is the language containing a single word; the empty word. The
root node is labelled true, and all the others are labelled false:

ε : ∀ {i A} → Lang i A
ν ε = true
δ ε _ = ∅





To compute the union (or sum) of two languages, we do a point-wise or
operation on the labels of their nodes:

_+_ : ∀ {i A} → Lang i A → Lang i A → Lang i A
ν (a + b) = ν a ∨ ν b
δ (a + b) x = δ a x + δ b x

infixl 10 _+_





Now, lets define concatenation.
The base case (ν) is straightforward: ε ∈ a · b iff  ε ∈ a and ε ∈ b.

For the derivative (δ), assume that we have a word w, w ∈ δ (a · b)
x. This means that xw = αβ, with α ∈ a and β ∈ b.

We have to consider two cases:



	ε ∈ a. Then, either:
	α = ε, and β = xw, where w ∈ δ b x.

	α = xα’, with α’ ∈ δ a x, and w = α’β ∈ δ a x · b.





	ε ∉ a. Then, only the second case above is possible:
	α = xα’, with α’ ∈ δ a x, and w = α’β ∈ δ a x · b.










_·_ : ∀ {i A} → Lang i A → Lang i A → Lang i A
ν (a · b) = ν a ∧ ν b
δ (a · b) x = if ν a then δ a x · b + δ b x else δ a x · b

infixl 20 _·_





Here is where sized types really shine. Without sized types, the termination
checker would not be able to recognize that _+_ or if_then_else are not
inspecting the tree, which could render the definition non-productive. By contrast,
with sized types, we know that the a + b is defined to the same
depth as a and b are.

In a similar spirit, we can define the Kleene star:

_* : ∀ {i A} → Lang i A → Lang i A
ν (a *) = true
δ (a *) x = δ a x · a *

infixl 30 _*





Again, because the types tell us that _·_ preserves the size of its
inputs, we can have the recursive call to a * under a function
call to _·_.


Testing

First, we want to give a precise notion of membership in a language.
We consider a word as a List of characters.

_∈_ : ∀ {i} {A} → List i A → Lang i A → Bool
[] ∈ a = ν a
(x ∷ w) ∈ a = w ∈ δ a x





Note how the size of the word we test for membership cannot be
larger than the depth to which the language tree is defined.

If we want to use regular, non-sized lists, we need to ask for the
language to have size ω.

_∈_ : ∀ {A} → List A → Lang ω A → Bool
[] ∈ a = ν a
(x ∷ w) ∈ a = w ∈ δ a x





Intuitively, ω is a Size larger than the size of any term
than one could possibly define in Agda.

Now, let’s consider binary strings as words. First, we
define the languages containing a single word of length 1:

⟦_⟧ : ∀ {i} → Bool → Lang i Bool
ν ⟦ _ ⟧    =  false

δ ⟦ false ⟧ false = ε
δ ⟦ true ⟧ true = ε
δ ⟦ false ⟧ true = ∅
δ ⟦ true ⟧ false = ∅





Now we can define the bip-bop language, consisting of strings of even
length starting with “true”, where each “true” is followed by “false”, and
viceversa.

bip-bop = (⟦ true ⟧ · ⟦ false ⟧)*





We can now test words for membership in the language bip-bop

test₁ : (true ∷ false ∷ true ∷ false ∷ true ∷ false ∷ []) ∈ bip-bop ≡ true
test₁ = refl

test₂ : (true ∷ false ∷ true ∷ false ∷ true ∷ []) ∈ bip-bop ≡ false
test₂ = refl

test₃ : (true ∷ true ∷ false ∷ []) ∈ bip-bop ≡ false
test₃ = refl










References



	Formal Languages, Formally and Coinductively, Dmitriy Traytel, FSCD (2016) [https://www21.in.tum.de/~traytel/papers/fscd16-coind_lang/paper.pdf].
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With-functions




Pragmas and Options


	The NON_TERMINATING pragma


New in version 2.4.2.



This is a safer version of TERMINATING
which doesn’t treat the affected functions as terminating. This
means that NON_TERMINATING functions do not reduce during type
checking. They do reduce at run-time and when invoking C-c C-n at
top-level (but not in a hole).






	The TERMINATING pragma


Changed in version 2.4.2.1: replaced the NO_TERMINATION_CHECK pragma.



Switches off termination checker for individual function definitions
and mutual blocks and marks them as terminating.

The pragma must precede a function definition or a mutual block. The
pragma cannot be used in --safe mode.

Examples:


	Skipping a single definition: before type signature:

{-# TERMINATING #-}
a : A
a = a







	Skipping a single definition: before first clause:

b : A
{-# TERMINATING #-}
b = b







	Skipping an old-style mutual block: Before mutual keyword:

{-# TERMINATING #-}
mutual
  c : A
  c = d

  d : A
  d = c







	Skipping an old-style mutual block: Somewhere within mutual
block before a type signature or first function clause:

mutual
 {-# TERMINATING #-}
 e : A
 e = f

 f : A
 f = e







	Skipping a new-style mutual block: Anywhere before a type
signature or first function clause in the block:

g : A
h : A

g = h
{-# TERMINATING #-}
h = g
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With abstraction was first introduced by Conor McBride [McBride2004] and lets
you pattern match on the result of an intermediate computation by effectively
adding an extra argument to the left-hand side of your function.


Usage

In the simplest case the with construct can be used just to discriminate on
the result of an intermediate computation. For instance

filter : {A : Set} → (A → Bool) → List A → List A
filter p [] = []
filter p (x ∷ xs) with p x
filter p (x ∷ xs)    | true  = x ∷ filter p xs
filter p (x ∷ xs)    | false = filter p xs





The clause containing the with-abstraction has no right-hand side. Instead it
is followed by a number of clauses with an extra argument on the left,
separated from the original arguments by a vertical bar (|).

When the original arguments are the same in the new clauses you can use the
... syntax:

filter : {A : Set} → (A → Bool) → List A → List A
filter p [] = []
filter p (x ∷ xs) with p x
...                  | true  = x ∷ filter p xs
...                  | false = filter p xs





In this case ... expands to filter p (x ∷ xs). There are three cases
where you have to spell out the left-hand side:


	If you want to do further pattern matching on the original arguments.

	When the pattern matching on the intermediate result refines some of the
other arguments (see Dot patterns).

	To disambiguate the clauses of nested with abstractions (see Nested with-abstractions below).




Generalisation

The power of with-abstraction comes from the fact that the goal type and the
type of the original arguments are generalised over the value of the scrutinee.
See Technical details below for the details.  This generalisation is
important when you have to prove properties about functions defined using
with. For instance, suppose we want to prove that the filter function
above satisfies some property P. Starting out by pattern matching of the
list we get the following (with the goal types shown in the holes)

postulate P : ∀ {A} → List A → Set
postulate p-nil : P []
postulate Q : Set
postulate q-nil : Q





proof : {A : Set} (p : A → Bool) (xs : List A) → P (filter p xs)
proof p []       = {! P [] !}
proof p (x ∷ xs) = {! P (filter p xs | p x) !}





In the cons case we have to prove that P holds for filter p xs | p x.
This is the syntax for a stuck with-abstraction–filter cannot reduce
since we don’t know the value of p x. This syntax is used for printing, but
is not accepted as valid Agda code. Now if we with-abstract over p x, but
don’t pattern match on the result we get:

proof : {A : Set} (p : A → Bool) (xs : List A) → P (filter p xs)
proof p [] = p-nil
proof p (x ∷ xs) with p x
...                 | r   = {! P (filter p xs | r) !}





Here the p x in the goal type has been replaced by the variable r
introduced for the result of p x. If we pattern match on r the
with-clauses can reduce, giving us:

proof : {A : Set} (p : A → Bool) (xs : List A) → P (filter p xs)
proof p [] = p-nil
proof p (x ∷ xs) with p x
...                 | true  = {! P (x ∷ filter p xs) !}
...                 | false = {! P (filter p xs) !}





Both the goal type and the types of the other arguments are generalised, so it
works just as well if we have an argument whose type contains filter p xs.

proof₂ : {A : Set} (p : A → Bool) (xs : List A) → P (filter p xs) → Q
proof₂ p [] _ = q-nil
proof₂ p (x ∷ xs) H with p x
...                    | true  = {! H : P (filter p xs) !}
...                    | false = {! H : P (x ∷ filter p xs) !}





The generalisation is not limited to scrutinees in other with-abstractions. All
occurrences of the term in the goal type and argument types will be
generalised.

Note that this generalisation is not always type correct and may result in a
(sometimes cryptic) type error. See Ill-typed with-abstractions below for
more details.




Nested with-abstractions

With-abstractions can be nested arbitrarily. The only thing to keep in mind in
this case is that the ... syntax applies to the closest with-abstraction.
For example, suppose you want to use ... in the definition below.

compare : Nat → Nat → Comparison
compare x y with x < y
compare x y    | false with y < x
compare x y    | false    | false = equal
compare x y    | false    | true  = greater
compare x y    | true = less





You might be tempted to replace compare x y with ... in all the
with-clauses as follows.

compare : Nat → Nat → Comparison
compare x y with x < y
...            | false with y < x
...                       | false = equal
...                       | true  = greater
...            | true = less    -- WRONG





This, however, would be wrong. In the last clause the ... is interpreted as
belonging to the inner with-abstraction (the whitespace is not taken into
account) and thus expands to compare x y | false | true. In this case you
have to spell out the left-hand side and write

compare : Nat → Nat → Comparison
compare x y with x < y
...            | false with y < x
...                       | false = equal
...                       | true  = greater
compare x y    | true = less








Simultaneous abstraction

You can abstract over multiple terms in a single with abstraction. To do this
you separate the terms with vertical bars (|).

compare : Nat → Nat → Comparison
compare x y with x < y | y < x
...            | true  | _     = less
...            | _     | true  = greater
...            | false | false = equal





In this example the order of abstracted terms does not matter, but in general
it does. Specifically, the types of later terms are generalised over the values
of earlier terms. For instance

postulate plus-commute : (a b : Nat) → a + b ≡ b + a
postulate P : Nat → Set





thm : (a b : Nat) → P (a + b) → P (b + a)
thm a b t with a + b | plus-commute a b
thm a b t    | ab    | eq = {! t : P ab, eq : ab ≡ b + a !}





Note that both the type of t and the type of the result eq of
plus-commute a b have been generalised over a + b. If the terms in the
with-abstraction were flipped around, this would not be the case.  If we now
pattern match on eq we get

thm : (a b : Nat) → P (a + b) → P (b + a)
thm a b t with   a + b  | plus-commute a b
thm a b t    | .(b + a) | refl = {! t : P (b + a) !}





and can thus fill the hole with t. In effect we used the commutativity
proof to rewrite a + b to b + a in the type of t. This is such a
useful thing to do that there is special syntax for it. See Rewrite below.

A limitation of generalisation is that only occurrences of the term that are
visible at the time of the abstraction are generalised over, but more instances
of the term may appear once you start filling in the right-hand side or do
further matching on the left. For instance, consider the following contrived
example where we need to match on the value of f n for the type of q to
reduce, but we then want to apply q to a lemma that talks about f n:

postulate
  R     : Set
  P     : Nat → Set
  f     : Nat → Nat
  lemma : ∀ n → P (f n) → R

Q : Nat → Set
Q zero    = ⊥
Q (suc n) = P (suc n)





proof : (n : Nat) → Q (f n) → R
proof n q with f n
proof n ()   | zero
proof n q    | suc fn = {! q : P (suc fn) !}





Once we have generalised over f n we can no longer apply the lemma, which
needs an argument of type P (f n). To solve this problem we can add the
lemma to the with-abstraction:

proof : (n : Nat) → Q (f n) → R
proof n q with f n    | lemma n
proof n ()   | zero   | _
proof n q    | suc fn | lem = lem q





In this case the type of lemma n (P (f n) → R) is generalised over f
n so in the right hand side of the last clause we have q : P (suc fn) and
lem : P (suc fn) → R.

See The Inspect idiom below for an alternative approach.




Using underscores in pattern repetition

If an ellipsis ... cannot be used, the with-clause has to repeat (or
refine) the patterns of the parent clause.  Since Agda 2.5.3, such
patterns can be replaced by underscores _ if the variables they bind
are not needed.  Here is a (slightly contrived) example:

record R : Set where
  coinductive -- disallows matching
  field  f  :  Bool
         n  :  Nat

data P (r : R) : Nat → Set where
  fTrue  :  R.f r ≡ true  →  P r zero
  nSuc   :                   P r (suc (R.n r))

data Q : (b : Bool) (n : Nat) →  Set where
  true!  :             Q true zero
  suc!   :  ∀{b n}  →  Q b (suc n)

test : (r : R) {n : Nat} (p : P r n) → Q (R.f r) n
test  r  nSuc       = suc!
test  r  (fTrue p)  with  R.f r
test  _  (fTrue ())    |  false
test  _  _             |  true  = true!  -- underscore instead of (isTrue _)








Rewrite

Remember example of simultaneous abstraction
from above.

postulate plus-commute : (a b : Nat) → a + b ≡ b + a

thm : (a b : Nat) → P (a + b) → P (b + a)
thm a b t with   a + b  | plus-commute a b
thm a b t    | .(b + a) | refl = t





This pattern of rewriting by an equation by with-abstracting over it and its
left-hand side is common enough that there is special syntax for it:

thm : (a b : Nat) → P (a + b) → P (b + a)
thm a b t rewrite plus-commute a b = t





The rewrite construction takes a term eq of type lhs ≡ rhs, where _≡_
is the built-in equality type, and expands to a
with-abstraction of lhs and eq followed by a match of the result of
eq against refl:

f ps rewrite eq = v

  -->

f ps with lhs | eq
...    | .rhs | refl = v





One limitation of the rewrite construction is that you cannot do further
pattern matching on the arguments after the rewrite, since everything happens
in a single clause. You can however do with-abstractions after the rewrite. For
instance,

postulate T : Nat → Set

isEven : Nat → Bool
isEven zero = true
isEven (suc zero) = false
isEven (suc (suc n)) = isEven n

thm₁ : (a b : Nat) → T (a + b) → T (b + a)
thm₁ a b t rewrite plus-commute a b with isEven a
thm₁ a b t | true  = t
thm₁ a b t | false = t





Note that the with-abstracted arguments introduced by the rewrite (lhs and
eq) are not visible in the code.




The inspect idiom

When you with-abstract a term t you lose the connection between t and
the new argument representing its value. That’s fine as long as all instances
of t that you care about get generalised by the abstraction, but as we saw
above this is not always the case. In that example we used
simultaneous abstraction to make sure that we did capture all the instances we
needed. An alternative to that is to use the inspect idiom, which retains a
proof that the original term is equal to its abstraction.

In the simplest form, the inspect idiom uses a singleton type:

data Singleton {a} {A : Set a} (x : A) : Set a where
  _with≡_ : (y : A) → x ≡ y → Singleton x

inspect : ∀ {a} {A : Set a} (x : A) → Singleton x
inspect x = x with≡ refl





Now instead of with-abstracting t, you can abstract over inspect t. For
instance,

filter : {A : Set} → (A → Bool) → List A → List A
filter p [] = []
filter p (x ∷ xs) with inspect (p x)
...                  | true  with≡ eq = {! eq : p x ≡ true !}
...                  | false with≡ eq = {! eq : p x ≡ false !}





Here we get proofs that p x ≡ true and p x ≡ false in the respective
branches that we can on use the right.  Note that since the with-abstraction is
over inspect (p x) rather than p x, the goal and argument types are no
longer generalised over p x. To fix that we can replace the singleton type
by a function graph type as follows (see Anonymous modules to learn
about the use of a module to bind the type arguments to Graph and
inspect):

module _ {a b} {A : Set a} {B : A → Set b} where

  data Graph (f : ∀ x → B x) (x : A) (y : B x) : Set b where
    ingraph : f x ≡ y → Graph f x y

  inspect : (f : ∀ x → B x) (x : A) → Graph f x (f x)
  inspect _ _ = ingraph refl





To use this on a term g v you with-abstract over both g v and inspect
g v. For instance, applying this to the example from above we get

postulate
  R     : Set
  P     : Nat → Set
  f     : Nat → Nat
  lemma : ∀ n → P (f n) → R

Q : Nat → Set
Q zero    = ⊥
Q (suc n) = P (suc n)

proof : (n : Nat) → Q (f n) → R
proof n q with f n    | inspect f n
proof n ()   | zero   | _
proof n q    | suc fn | ingraph eq = {! q : P (suc fn), eq : f n ≡ suc fn !}





We could then use the proof that f n ≡ suc fn to apply lemma to q.

This version of the inspect idiom is defined (using slightly different names)
in the standard library [https://github.com/agda/agda-stdlib] in the module
Relation.Binary.PropositionalEquality and in the agda-prelude [https://github.com/UlfNorell/agda-prelude] in
Prelude.Equality.Inspect (reexported by Prelude).




Alternatives to with-abstraction

Although with-abstraction is very powerful there are cases where you cannot or
don’t want to use it. For instance, you cannot use with-abstraction if you are
inside an expression in a right-hand side. In that case there are a couple of
alternatives.


Pattern lambdas

Agda does not have a primitive case construct, but one can be emulated
using pattern matching lambdas. First you define a
function case_of_ as follows:

case_of_ : ∀ {a b} {A : Set a} {B : Set b} → A → (A → B) → B
case x of f = f x





You can then use this function with a pattern matching lambda as the second
argument to get a Haskell-style case expression:

filter : {A : Set} → (A → Bool) → List A → List A
filter p [] = []
filter p (x ∷ xs) =
  case p x of
  λ { true  → x ∷ filter p xs
    ; false → filter p xs
    }





This version of case_of_ only works for non-dependent functions. For
dependent functions the target type will in most cases not be inferrable, but
you can use a variant with an explicit B for this case:

case_return_of_ : ∀ {a b} {A : Set a} (x : A) (B : A → Set b) → (∀ x → B x) → B x
case x return B of f = f x





The dependent version will let you generalise over the scrutinee, just like a
with-abstraction, but you have to do it manually. Two things that it will not let you do is


	further pattern matching on arguments on the left-hand side, and

	refine arguments on the left by the patterns in the case expression. For
instance if you matched on a Vec A n the n would be refined by the
nil and cons patterns.






Helper functions

Internally with-abstractions are translated to auxiliary functions (see
Technical details below) and you can always[1] write these
functions manually. The downside is that the type signature for the helper
function needs to be written out explicitly, but fortunately the
Emacs Mode has a command (C-c C-h) to generate it using the same
algorithm that generates the type of a with-function.






Performance considerations

The generalisation step of a with-abstraction needs to
normalise the scrutinee and the goal and argument types to make sure that all
instances of the scrutinee are generalised. The generalisation also needs to
be type checked to make sure that it’s not ill-typed. This makes it expensive to type check a with-abstraction
if


	the normalisation is expensive,

	the normalised form of the goal and argument types are big, making finding
the instances of the scrutinee expensive,

	type checking the generalisation is expensive, because the types are big, or
because checking them involves heavy computation.



In these cases it is worth looking at the alternatives to with-abstraction
from above.






Technical details

Internally with-abstractions are translated to auxiliary functions–there are
no with-abstractions in the Core language. This translation proceeds as
follows. Given a with-abstraction


[image: \[\arraycolsep=1.4pt \begin{array}{lrllcll}   \multicolumn{3}{l}{f : \Gamma \to B} \\   f ~ ps   & \mathbf{with} ~ & t_1 & | & \ldots & | ~ t_m \\   f ~ ps_1 & | ~ & q_{11} & | & \ldots & | ~ q_{1m} &= v_1 \\   \vdots \\   f ~ ps_n & | ~ & q_{n1} & | & \ldots & | ~ q_{nm} &= v_n \end{array}\]]


where [image: \Delta \vdash ps : \Gamma] (i.e. [image: \Delta] types the
variables bound in [image: ps]), we


	Infer the types of the scrutinees [image: t_1 : A_1, \ldots, t_m : A_m].



	Partition the context [image: \Delta] into [image: \Delta_1] and
[image: \Delta_2] such that [image: \Delta_1] is the smallest context where
[image: \Delta_1 \vdash t_i : A_i] for all [image: i], i.e., where the scrutinees are well-typed.
Note that the partitioning is not required to be a split,
[image: \Delta_1\Delta_2] can be a (well-formed) reordering of [image: \Delta].



	Generalise over the [image: t_i] s, by computing


[image: C = (w_1 : A_1)(w_1 : A_2')\ldots(w_m : A_m') \to \Delta_2' \to B']


such that the normal form of [image: C] does not contain any [image: t_i] and


[image: A_i'[w_1 := t_1 \ldots w_{i - 1} := t_{i - 1}] \simeq A_i  (\Delta_2' \to B')[w_1 := t_1 \ldots w_m := t_m] \simeq \Delta_2 \to B]


where [image: X \simeq Y] is equality of the normal forms of [image: X] and
[image: Y]. The type of the auxiliary function is then [image: \Delta_1 \to C].



	Check that [image: \Delta_1 \to C] is type correct, which is not guaranteed
(see below).



	Add a function [image: f_{aux}], mutually recursive with [image: f], with the
definition


[image: \[\arraycolsep=1.4pt \begin{array}{llll}   \multicolumn{4}{l}{f_{aux} : \Delta_1 \to C} \\   f_{aux} ~ ps_{11} & \mathit{qs}_1 & ps_{21} &= v_1 \\   \vdots \\   f_{aux} ~ ps_{1n} & \mathit{qs}_n & ps_{2n} &= v_n \\ \end{array}\]]


where [image: \mathit{qs}_i = q_{i1} \ldots q_{im}], and [image: ps_{1i} : \Delta_1] and
[image: ps_{2i} : \Delta_2] are the patterns from [image: ps_i] corresponding to
the variables of [image: ps]. Note that due to the possible reordering of the
partitioning of [image: \Delta] into [image: \Delta_1] and [image: \Delta_2],
the patterns [image: ps_{1i}] and [image: ps_{2i}] can be in a different order
from how they appear [image: ps_i].



	Replace the with-abstraction by a call to [image: f_{aux}] resulting in the
final definition


[image: \[\arraycolsep=1.4pt \begin{array}{l}   f : \Gamma \to B \\   f ~ ps = f_{aux} ~ \mathit{xs}_1 ~ ts ~ \mathit{xs}_2 \end{array}\]]


where [image: ts = t_1 \ldots t_m] and [image: \mathit{xs}_1] and
[image: \mathit{xs}_2] are the variables from [image: \Delta] corresponding to
[image: \Delta_1] and [image: \Delta_2] respectively.






Examples

Below are some examples of with-abstractions and their translations.

postulate
   A     : Set
   _+_   : A → A → A
   T     : A → Set
   mkT   : ∀ x → T x
   P     : ∀ x → T x → Set

-- the type A of the with argument has no free variables, so the with
-- argument will come first
f₁ : (x y : A) (t : T (x + y)) → T (x + y)
f₁ x y t with x + y
f₁ x y t    | w = {!!}

-- Generated with function
f-aux₁ : (w : A) (x y : A) (t : T w) → T w
f-aux₁ w x y t = {!!}

-- x and p are not needed to type the with argument, so the context
-- is reordered with only y before the with argument
f₂ : (x y : A) (p : P y (mkT y)) → P y (mkT y)
f₂ x y p with mkT y
f₂ x y p    | w = {!!}

f-aux₂ : (y : A) (w : T y) (x : A) (p : P y w) → P y w
f-aux₂ y w x p = {!!}

postulate
  H : ∀ x y → T (x + y) → Set

-- Multiple with arguments are always inserted together, so in this case
-- t ends up on the left since it’s needed to type h and thus x + y isn’t
-- abstracted from the type of t
f₃ : (x y : A) (t : T (x + y)) (h : H x y t) → T (x + y)
f₃ x y t h with x + y | h
f₃ x y t h    | w₁    | w₂ = {! t : T (x + y), goal : T w₁ !}

f-aux₃ : (x y : A) (t : T (x + y)) (h : H x y t) (w₁ : A) (w₂ : H x y t) → T w₁
f-aux₃ x y t h w₁ w₂ = {!!}

-- But earlier with arguments are abstracted from the types of later ones
f₄ : (x y : A) (t : T (x + y)) → T (x + y)
f₄ x y t with x + y | t
f₄ x y t    | w₁    | w₂ = {! t : T (x + y), w₂ : T w₁, goal : T w₁ !}

f-aux₄ : (x y : A) (t : T (x + y)) (w₁ : A) (w₂ : T w₁) → T w₁
f-aux₄ x y t w₁ w₂ = {!!}








Ill-typed with-abstractions

As mentioned above, generalisation does not always produce well-typed results.
This happens when you abstract over a term that appears in the type of a subterm
of the goal or argument types. The simplest example is abstracting over the
first component of a dependent pair. For instance,

postulate
  A : Set
  B : A → Set
  H : (x : A) → B x → Set





bad-with : (p : Σ A B) → H (fst p) (snd p)
bad-with p with fst p
...           | _ = {!!}





Here, generalising over fst p results in an ill-typed application H w
(snd p) and you get the following type error:

fst p != w of type A
when checking that the type (p : Σ A B) (w : A) → H w (snd p) of
the generated with function is well-formed





This message can be a little difficult to interpret since it only prints the
immediate problem (fst p != w) and the full type of the with-function. To
get a more informative error, pointing to the location in the type where the
error is, you can copy and paste the with-function type from the error message
and try to type check it separately.




	[1]	The termination checker has special treatment for
with-functions, so replacing a with by the
equivalent helper function might fail termination.







	[McBride2004]	C. McBride and J. McKinna. The view from the left. Journal of Functional Programming, 2004.
http://strictlypositive.org/vfl.pdf.
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Note
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Backends


GHC Backend

The GHC backend translates Agda programs into GHC Haskell programs.


Usage

The backend can be invoked from the command line using the flag
--compile:

agda --compile [--compile-dir=<DIR>] [--ghc-flag=<FLAG>] <FILE>.agda








Pragmas




Example

The following “Hello, World!” example requires some Built-ins
and uses the Foreign Function Interface:

module HelloWorld where

{-# IMPORT Data.Text.IO #-}

data Unit : Set where
  unit : Unit

{-# COMPILED_DATA Unit () () #-}

postulate
  String : Set

{-# BUILTIN STRING String #-}

postulate
  IO : Set → Set

{-# BUILTIN IO IO #-}
{-# COMPILED_TYPE IO IO #-}

postulate
  putStr : String → IO Unit

{-# COMPILED putStr Data.Text.IO.putStr #-}

main : IO Unit
main = putStr "Hello, World!"





After compiling the example

agda --compile HelloWorld.agda





you can run the HelloWorld program which prints Hello, World!.




Required libraries for the Built-ins


	primFloatEquality requires the ieee754 [http://hackage.haskell.org/package/ieee754] library.








UHC Backend


New in version 2.5.1.




Note

The Agda Standard Library has been updated to support this new backend.
This backend is currently experimental.



The Agda UHC backend targets the Core language of the Utrecht Haskell Compiler (UHC).
This backend works on the Mac and Linux platforms and requires GHC >= 7.10.

The backend is disabled by default, as it will pull in some large
dependencies. To enable the backend, use the “uhc” cabal flag when
installing Agda:

cabal install Agda -fuhc





The backend also requires UHC to be installed. UHC is not available on
Hackage and needs to be installed manually. This version of Agda has
been tested with UHC 1.1.9.5. To install UHC, the following commands
can be used:

cabal install uhc-util-0.1.6.7 uulib-0.9.22
wget https://github.com/UU-ComputerScience/uhc/archive/v1.1.9.5.tar.gz
tar -xf v1.1.9.5.tar.gz
cd uhc-1.1.9.5/EHC
./configure
make
make install





The Agda UHC compiler can be invoked from the command line using the
flag --uhc:

agda --uhc [--compile-dir=<DIR>]
    [--uhc-bin=<UHC>] [--uhc-dont-call-uhc] <FILE>.agda








JavaScript Backend

The JavaScript backend translates Agda code to JavaScript code.


Usage

The backend can be invoked from the command line using the flag
--js:

agda --js [--compile-dir=<DIR>] <FILE>.agda












Optimizations


Builtin natural numbers

Builtin natural numbers are represented as arbitrary-precision integers.
The builtin functions on natural numbers are compiled to the corresponding
arbitrary-precision integer functions.

Note that pattern matching on an Integer is slower than on an unary
natural number. Code that does a lot of unary manipulations
and doesn’t use builtin arithmetic likely becomes slower
due to this optimization. If you find that this is the case,
it is recommended to use a different, but
isomorphic type to the builtin natural numbers.




Erasable types

A data type is considered erasable if it has a single constructor whose
arguments are all erasable types, or functions into erasable types. The
compilers will erase


	calls to functions into erasable types

	pattern matches on values of erasable type



At the moment the compilers only have enough type information to erase calls of
top-level functions that can be seen to return a value of erasable type without
looking at the arguments of the call. In other words, a function call will not
be erased if it calls a lambda bound variable, or the result is erasable for
the given arguments, but not for others.

Typical examples of erasable types are the equality type and the accessibility
predicate used for well-founded recursion:

data _≡_ {a} {A : Set a} (x : A) : A → Set a where
  refl : x ≡ x

data Acc {a} {A : Set a} (_<_ : A → A → Set a) (x : A) : Set a where
  acc : (∀ y → y < x → Acc _<_ y) → Acc _<_ x





The erasure means that equality proofs will (mostly) be erased, and never
looked at, and functions defined by well-founded recursion will ignore the
accessibility proof.
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Keybindings

Commands working with types can be prefixed with C-u to compute
type without further normalisation and with C-u C-u to compute
normalised types.


Global commands







	C-c C-l
	Load file


	C-c C-x C-c
	Compile file


	C-c C-x C-q
	Quit, kill the Agda process


	C-c C-x C-r
	Kill and restart the Agda process


	C-c C-x C-d
	Remove goals and highlighting (deactivate)


	C-c C-x C-h
	Toggle display of hidden arguments


	C-c C-=
	Show constraints


	C-c C-s
	Solve constraints


	C-c C-?
	Show all goals


	C-c C-f
	Move to next goal (forward)


	C-c C-b
	Move to previous goal (backwards)


	C-c C-d
	Infer (deduce) type


	C-c C-o
	Module contents


	C-c C-z
	Search through definitions in scope


	C-c C-n
	Compute normal form


	C-u C-c C-n
	Compute normal form, ignoring abstract


	C-u C-u C-c C-n
	Compute and print normal form of show <expression>


	C-c C-x M-;
	Comment/uncomment rest of buffer


	C-c C-x C-s
	Switch to a different Agda version








Commands in context of a goal

Commands expecting input (for example which variable to case split)
will either use the text inside the goal or ask the user for input.







	C-c C-SPC
	Give (fill goal)


	C-c C-r
	Refine. Partial give: makes new holes for
missing arguments


	C-c C-a
	Automatic Proof Search (Auto)


	C-c C-c
	Case split


	C-c C-h
	Compute type of helper function and add
type signature to kill ring (clipboard)


	C-c C-t
	Goal type


	C-c C-e
	Context (environment)


	C-c C-d
	Infer (deduce) type


	C-c C-,
	Goal type and context


	C-c C-.
	Goal type, context and inferred type


	C-c C-o
	Module contents


	C-c C-n
	Compute normal form


	C-u C-c C-n
	Compute normal form, ignoring abstract


	C-u C-u C-c C-n
	Compute and print normal form of show <expression>








Other commands







	TAB
	Indent current line, cycles between points


	S-TAB
	Indent current line, cycles in opposite direction


	M-.
	Go to definition of identifier under point


	Middle mouse button
	Go to definition of identifier clicked on


	M-*
	Go back (Emacs < 25.1)


	M-,
	Go back (Emacs ≥ 25.1)










Unicode input

The Agda emacs mode comes with an input method for for easily writing
Unicode characters. Most Unicode character can be input by typing
their corresponding TeX or LaTeX commands, eg. typing \lambda will
input λ. To see all characters you can input using the Agda input
method see M-x describe-input-method Agda.

If you know the Unicode name of a character you can input it using
M-x ucs-insert or C-x 8 RET. Example: C-x 8 RET not SPACE a
SPACE sub TAB RET to insert “NOT A SUBSET OF” ⊄.

To find out how to input a specific character, eg from the standard
library, position the cursor over the character and use M-x
describe-char or C-u C-x =.

The Agda input method can be customised via M-x customize-group
agda-input.


Common characters XXX

Many common characters have a shorter input sequence than the
corresponding TeX command:


	Arrows: \r- for →. You can replace r with another
direction: u, d, l. Eg. \d- for ↓. Replace
- with = or == to get a double and triple arrows.

	Greek letters can be input by \G followed by the
first character of the letters Latin name. Eg. \Gl will input
λ while \GL will input Λ.

	Negation: you can get the negated form of many characters by
appending n to the name. Eg. while \ni inputs ∋,
\nin will input ∌.

	Subscript and superscript: you can input subscript or
superscript forms by prepending the character with \_ (subscript)
or \^ (superscript). Note that not all characters have a
subscript or superscript counterpart in Unicode.



Some characters which were used in this documentation or which are
commonly used in the standard library (sorted by hexadecimal code):









	Hex code
	Character
	Short key-binding
	TeX command




	00ac
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Library Management

Agda has a simple package management system to support working with multiple
libraries in different locations. The central concept is that of a library.


Example: Using the standard library

Before we go into details, here is some quick information for the impatient
on how to tell Agda about the location of the standard library, using the
library management system.

Let’s assume you have downloaded the standard library into a directory which we
will refer to by AGDA_STDLIB (as an absolute path).  A library file
standard-library.agda-lib should exist in this directory, with the
following content:

name: standard-library
include: src





To use the standard library by default in your Agda projects, you have
to do two things:


	Create a file AGDA_DIR/libraries with the following content:

AGDA_STDLIB/standard-library.agda-lib





(Of course, replace AGDA_STDLIB by the actual path.)

The AGDA_DIR defaults to ~/.agda on unix-like systems and
C:\Users\USERNAME\AppData\Roaming\agda or similar on Windows.
(More on AGDA_DIR below.)

Remark: The libraries file informs Agda about the libraries you want it to know
about.












	Create a file AGDA_DIR/defaults with the following content:

standard-library





Remark: The defaults file informs Agda which of the libraries pointed
to by libraries should be used by default (i.e. in the default
include path).





That’s the short version, if you want to know more, read on!




Library files

A library consists of


	a name

	a set of dependencies

	a set of include paths



Libraries are defined in .agda-lib files with the following syntax:

name: LIBRARY-NAME  -- Comment
depend: LIB1 LIB2
  LIB3
  LIB4
include: PATH1
  PATH2
  PATH3





Dependencies are library names, not paths to .agda-lib files, and include
paths are relative to the location of the library-file.




Installing libraries

To be found by Agda a library file has to be listed (with its full path) in a
libraries file


	AGDA_DIR/libraries-VERSION, or if that doesn’t exist

	AGDA_DIR/libraries



where VERSION is the Agda version (for instance 2.5.1). The
AGDA_DIR defaults to ~/.agda on unix-like systems and
C:\Users\USERNAME\AppData\Roaming\agda or similar on Windows, and can be
overridden by setting the AGDA_DIR environment variable.

Environment variables in the paths (of the form $VAR or ${VAR}) are
expanded. The location of the libraries file used can be overridden using the
--library-file=FILE command line option.

You can find out the precise location of the libraries file by
calling agda -l fjdsk Dummy.agda at the command line and looking at the
error message (assuming you don’t have a library called fjdsk installed).

Note that if you want to install a library so that it is used by default,
it must also be listed in the defaults file (details below).




Using a library

There are three ways a library gets used:


	You supply the --library=LIB (or -l LIB) option to Agda. This is
equivalent to adding a -iPATH for each of the include paths of LIB
and its (transitive) dependencies.



	No explicit --library flag is given, and the current project root
(of the Agda file that is being loaded) or one of its parent directories
contains an .agda-lib file defining a library LIB. This library is
used as if a --library=LIB option had been given, except that it is not
necessary for the library to be listed in the AGDA_DIR/libraries file.



	No explicit --library flag, and no .agda-lib file in the project
root. In this case the file AGDA_DIR/defaults is read and all libraries
listed are added to the path. The defaults file should contain a list of
library names, each on a separate line. In this case the current directory is
also added to the path.

To disable default libraries, you can give the flag
--no-default-libraries. To disable using libraries altogether, use the
--no-libraries flag.








Default libraries

If you want to usually use a variety of libraries, it is simplest to list them
all in the AGDA_DIR/defaults file.  It has format


standard-library
library2
library3








where of course library2 and library3 are the libraries you commonly use.
While it is safe to list all your libraries in library, be aware that listing
libraries with name clashes in defaults can lead to difficulties, and should be
done with care (i.e. avoid it unless you really must).




Version numbers

Library names can end with a version number (for instance, mylib-1.2.3).
When resolving a library name (given in a --library flag, or listed as a
default library or library dependency) the following rules are followed:


	If you don’t give a version number, any version will do.

	If you give a version number an exact match is required.

	When there are multiple matches an exact match is preferred, and otherwise
the latest matching version is chosen.



For example, suppose you have the following libraries installed: mylib,
mylib-1.0, otherlib-2.1, and otherlib-2.3. In this case, aside from
the exact matches you can also say --library=otherlib to get
otherlib-2.3.




Upgrading

If you are upgrading from a pre 2.5 version of Agda, be aware that you may have
remnants of the previous library management system in your preferences.  In particular,
if you get warnings about agda2-include-dirs, you will need to find where this is
defined.  This may be buried deep in .el files, whose location is both operating
system and emacs version dependant.
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See also the HACKING file in the root of the agda repo.
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Documentation


Note

This is a stub.



Documentation is written in reStructuredText format [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html].


Code examples

You can include code examples in your documentation.

If your give the documentation file the extension .lagda.rst, code
examples in the  can be checked as part of the continuous integration. This
way, they will be guaranteed to always work with the latest version of
Agda.


Tip

If you edit documentation files in Emacs, you can use Agda’s interactive
mode to write your code examples. Use M-x agda2-mode to switch to Agda
mode, and M-x rst-mode to switch back to rST mode.




Syntax

The syntax for embedding code examples depends on:



	Whether the code example should be visible to the reader of the documentation.

	Whether the code example contains valid Agda code (which should be type-checked).







Visible, checked code examples

This is code that the user will see, and that will be also checked for
correctness by Agda.  Ideally, all code in the documentation should be
of this form: both visible and valid.

It can appear stand-alone:

::

   data Bool : Set where
     true false : Bool


Or at the end of a paragraph::

   data Bool : Set where
     true false : Bool

Here ends the code fragment.





Result:


It can appear stand-alone:

data Bool : Set where
  true false : Bool





Or at the end of a paragraph:

data Bool : Set where
  true false : Bool





Here ends the code fragment.





Tip

Remember to always leave a blank like after the ::.
Otherwise, the code will be checked by Agda, but it will appear
variable-width paragraph text in the documentation.






Visible, unchecked code examples

This is code that the reader will see, but will not be checked by Agda. It is
useful for examples of incorrect code, program output, or code in languages
different from Agda.

.. code-block:: agda

   -- This is not a valid definition

   ω : ∀ a → a
   ω x = x


.. code-block:: haskell

   -- This is haskell code

   data Bool = True | False





Result:


-- This is not a valid definition

ω : ∀ a → a
ω x = x





-- This is haskell code

data Bool = True | False











Invisible, checked code examples

This is code that is not shown to the reader, but which is used to typecheck
the code that is actually displayed.

This might be definitions that are well known enough that do not need to be
shown again.

..
  ::
  data Nat : Set where
    zero : Nat
    suc  : Nat → Nat

::

  add : Nat → Nat → Nat
  add zero y = y
  add (suc x) y = suc (add x y)





Result:


add : Nat → Nat → Nat
add zero y = y
add (suc x) y = suc (add x y)













File structure

Documentation literate files (.lagda.*) are type-checked as whole Agda files,
as if all literate text was replaced by whitespace. Thus, indentation is
interpreted globally.


Namespacing

In the documentation, files are typechecked starting from the doc/user-manual/
root. For example, the file doc/user-manual/language/data-types.lagda.rst
should start with a hidden code block declaring the name of the module as
language.data-types:

..
  ::
  module language.data-types where








Scoping

Sometimes you will want to use the same name in different places in the same
documentation file. You can do this by using hidden module declarations to
isolate the definitions from the rest of the file.

..
  ::
  module scoped-1 where

::

    foo : Nat
    foo = 42

..
  ::
  module scoped-2 where

  ::
    foo : Nat
    foo = 66





Result:


foo : Nat
foo = 42
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The Agda License

Copyright (c) 2005-2015 Ulf Norell, Andreas Abel, Nils Anders
Danielsson, Andrés Sicard-Ramírez, Dominique Devriese, Péter
Divianszki, Francesco Mazzoli, Stevan Andjelkovic, Daniel Gustafsson,
Alan Jeffrey, Makoto Takeyama, Andrea Vezzosi, Nicolas Pouillard,
James Chapman, Jean-Philippe Bernardy, Fredrik Lindblad, Nobuo
Yamashita, Fredrik Nordvall Forsberg, Patrik Jansson, Guilhem Moulin,
Stefan Monnier, Marcin Benke, Olle Fredriksson, Darin Morrison, Jesper
Cockx, Wolfram Kahl, Catarina Coquand

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
“Software”), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.



The file src/full/Agda/Utils/Parser/ReadP.hs is Copyright (c) The
University of Glasgow 2002 and is licensed under a BSD-like license as
follows:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:


	Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither name of the University nor the names of its contributors may be
used to endorse or promote products derived from this software without
specific prior written permission.



THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY COURT OF THE UNIVERSITY OF
GLASGOW AND THE CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
UNIVERSITY COURT OF THE UNIVERSITY OF GLASGOW OR THE CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.



The file src/full/Agda/Utils/Maybe/Strict.hs (and the following
license text?) uses the following license:

Copyright (c) Roman Leshchinskiy 2006-2007

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:


	Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

	Neither the name of the author nor the names of his contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.



THIS SOFTWARE IS PROVIDED BY THE CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.
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